ACCELERATING THE
FLOWSIMULATOR

Low-level Analysis and Optimization of CODA Kernels

i DLR

Motivation

= Computational Fluid Dynamics (CFD)
= Accurate prediction of fluid flows
= High demands on computational resources

= Continuous performance analysis and

optimization is key to efficient utilization of
HPC resources

= CODA is shown to scale well, but what
about node-level performance?

Johannes Wendler, DLR-SP Dresden, IPTW 05.10.2023

© DLR. Alle Rechte vorbehal

ten

DLR

https://www.dlr.de/de/service/impressum
https://www.dlr.de/de/service/impressum
https://www.dlr.de/de/service/impressum
https://www.dlr.de/de/service/impressum
https://www.dlr.de/de/service/impressum
https://www.dlr.de/de/service/impressum
https://www.dlr.de/de/service/impressum

Motivation

CODA

" Flow solver written by
= ONERA
* DLR
= Airbus
* Many other European partners

= User scenarios written in Python, solver
core written in C++

" Hybrid parallelization, computation &
communication overlap

= Spliss as linear solver

Johannes Wendler, DLR-SP Dresden, IPTW 05.10.2023

Recap of IPTW 2023

DLR

Roofline Performance for functor loops

100
H Euler

I Navier-Stokes

80 1

" Both inner face loops together account for ~90%
of runtime

" Performance of them is < 20% of Roofline
" Bottleneck unclear

60 1

P/Proofiine [%6]

40

Outlook:

" A deeper look into the assembly code
necessary

Functor

Johannes Wendler, DLR-SP Dresden, IPTW 05.10.2023

DLR

Il
|
ll

1l

!

MICROBENCHMARKS

Microbenchmarks 4#7
DLR

" Loops are large and contain many different sub parts from different
Classes/Functions

* Many similar symbols with long names (10-15 lines +) in one compilation unit
" Preprocessing of actual physical meshes/data takes some time

How?

= Create a minimal (non physical) dataset
* mimick the CODA access pattern (just OMP parallel)

* Create functors with just a subset of the operations of the actual functors,
iIncreasing the complexity and completeness step by step

Johannes Wendler, DLR-SP, 07.11.2025

Microbenchmarks - Loops 4#7
DLR

* OPM parallel

* Optionally loop over index array

Indirect * Has variable blocks of stride-one pattern. Then
Indices jumping to a different part of the data indices

* Emulate indirect access pattern of unstructured grids

Indices &

Data Pass the Data and the index of the “Grid Cell” to the functor

* Perform a computation on the “Grid Cell*
* Can have variable in- and outputs
* Loop can be called with different functors

Functor

Johannes Wendler, DLR-SP, 07.11.2025

Microbenchmarks - Functors 4#7
DLR

Augmentation

= Compute intermediate state variables from state variables, physical
constants and parameters (i.e. compute pressure from the perfect gas law)

= Compute the (convection-) flux of the Partial Differential Equation (from the
intermediate state)

* Compute the Roe approximate flux between two cells (from the fluxes of two
neighboring cells)

Johannes Wendler, DLR-SP, 07.11.2025

DLR

Dynamic Analysis 4#7
DLR

* Manual instrumentation of code

* Measure hardware performance counters (dependent on CPU)
" Access to many different metrics of what happens on the CPU
* May be unreliable data (always sanity check)

Perf Tools

= Samples the program execution
= Can also measure hardware performance counters

* Annotates assembly code with time spent at each binary block / instruction

Johannes Wendler, DLR-SP, 07.11.2025

Static Analysis ‘#7
DLR

OSACA

* Manual marker insertion into assembly code

* Analyzes the loop between those markers

* Gives information about execution port pressure and loop carried dependencies
(assuming data is in cache)

MAQAO

= Automatically find loops inside binary, can be analyzed seperately by loop ID

" Gives information about several bottlenecks (assuming data is in cache)
" j.e. vectorization ratio of instructions
= Execution port or front end pressure
" Function calls
" Register usage

Johannes Wendler, DLR-SP, 07.11.2025

RESULTS

12

Results 4#7
DLR

* IntelXeonW-2295 (18 phys. Cores)

= Has more counters than our AMD Zen2 Cluster
* Disabled boost @ 2.25 GHz
= P__.=2.25 GHz x 18 cores x 2 ports x 4 AVX x 2 fma = 648 Gflops/s

* Measured peak memory bandwidth: 72.7 GB/s

=GCC114.0
* Clang 17.04
" Flags:

" -fverbose-asm -Ofast -DNDEBUG -mtune=native -march=native -fno-finite-math-only

Johannes Wendler, DLR-SP, 07.11.2025

LIKWID

= Functors in order have rising
complexity

= AD has not as much impact on the
PDE flux (no complicated sqrt op?)

* Roofline performance sub par
= AD less impacted: maybe it hides a
bottleneck

" The two flux Functors in particular
seem to also have a different
bottleneck than memory

Johannes Wendler, DLR-SP, 07.11.2025

Memory bandwidth percentage

168 Memory Bandwidth Percentage

i DLR

80 -

Augmentation PDE flux
Benchmark

Il no AD
s AD

Roe flux

LIKWID 4#7
DLR

* Clang seems to be worse in some

100 Memory Stall Cycles Percentage

cases EEE no AD

. AD

* For AD Clang is consistently worse -

* New hint: Memory Stall cycles
* \Was not possible on AMD Zen2

= \We are waiting on memory without the
bandwidth being exhausted

= Could be a latency problem

60 -

40 A

Memory stall cycles percentage

20 A

Augmentation PDE flux Roe flux
Benchmark

Johannes Wendler, DLR-SP, 07.11.2025

OSACA + MAQAO

Port Pressure / Loop Cycles

DLR

Cycles per Iteration

* Busy cycles of front- and back-end == no AD L
250 mmm AD
* Final cycle estimation per iteration ———
= Comparison of static L1 prediction and Jil ACRO FUSION NOT POSSIBLE
§] FIT IN UOF CACHE C c Sy
LIKWID measurements -JF'ES micro-operation queue E{E_}?:_Tr_m!]?r_i
i1 front end Front-end :
MAQAO / OSACA | LIKWID DU A ey
$ DIV/SQRT : 24.58-26.088
No AD / AD No AD / AD ¥ Back-end Data deps.: 6.06
9] -------- Veri 1: 24.58-26.86
Augmentation 24.5-26/64.5-66 25.6-27.9/50.7-51.9 Overatt bl 2a.s0m0.ee
PDE Flux 43.25/67.5 28.9-30.8/39.1-40.5 uops | 12.50 | 12.50 | 11.50 | 11.17 | 13.00 | 4.5 | 4.50 | 11.33
cycles | 12.58 | 12.5@ | 11.58 | 11.17 | 13.80 | 4.58 | 4.50 | 11.33
Roe Flux 26.75/ 46.25 ~181.0 /261.0
0 I | I | I |
. . . . Augmentation PDE flux Roe flux
= Static analysis maybe overestimates div ops Benchmark

= Roe flux estimation does not match measurements
=> completely different bottle neck

Johannes Wendler, DLR-SP, 07.11.2025

MAQAO + Perf Tools 4#7
DLR

" Op queue for DIV / SQRT
* For Augementation / PDE flux
* Hint: remove those ops if possible

* No vectorization
* For all functors
* Hint: stride-1 access => reorganize arrays of structures to structures of arrays

= Function calls
* For PDE flux / Roe flux
= Hint: inlining
» Used register count => for Roe flux the amount of registers is exhausted

Perf Tools

= Hottest instructions are div instructions
" Very few MOV ops were slightly hotter than usual => maybe memory latency issues

Johannes Wendler, DLR-SP, 07.11.2025

Optimization Strategies 4#7
DLR

Low hanging fruits

= Remove redundant DIV ops
= Augmentation has 1 easy to remove DIV

* Manual prefetching to alleviate memory latency problems
= Can be worked into all functors with a few lines of code

" |nlining
* Experiment with compiler flags
= Add compiler hints into code

Johannes Wendler, DLR-SP, 07.11.2025

Results div opt

" Speedup
* No AD: 1.144
= AD: 1.053
" Inside uncertainty intervals

* MAQAOQ loop cycles prediction:
"= No AD: 4 cycles less
= AD: 8 cycles less
" Does not match LIKWID measurements
* Inside uncertainty intervals

Cycles per iteration

» Speedup inconclusive with positive bias

Johannes Wendler, DLR-SP, 07.11.2025

50 A

40 A

30 A

10 A

i DLR

Cycles per Iteration

BN Augmentation

Augmentation

o optimized

no AD

AD

Result prefetching

" Prefetching with many different
strides (more than shown here)

" Small gains, but within uncertainty
intervals

" Looks worse for AD

" Memory stall cycles

" show that we should be waiting on
memory less

" More so for AD

" Hints that this is not the dominant
bottleneck or stall counters are
unreliable

Johannes Wendler, DLR-SP, 07.11.2025

Memory stall cycles percentage

i DLR

Memory Stall Cycles Percentage AD

100

80 -

60 -

40 -

Augmentation PDE flux
Benchmark

no prefetching
prefetch stride 32
prefetch stride 64
prefetch stride 200
prefetch stride 500

Roe flux

Result Inlining ‘#7
DLR

* Experiments with compiler flags
= Stay with GCC here, as clang has different flags

* Inline flags:

--param inline-unit-growth=200 --param inline-min-speedup=1

= Aggressive inline flags:

--param inline-unit-growth=1000 --param inline-min-speedup=1

Johannes Wendler, DLR-SP, 07.11.2025

Result Inlining ‘#7
DLR

. NO AD Runtimes AD
* Only the Roe flux benefits here 12 mem default
. . T B inline flags
= Many functions still not inlined | - aggressive iniine fiags
= AD

* PDE flux and Roe flux just slightly better
= Many functions still not inlined

Runtime [s]

* MAQAO: function calls inside loop

default inline aggressive
noAD/AD [noAD/AD [noAD/AD

Augmentation 0/1 0/0 0/0 _

Augmentation PDE flux Roe flux
PDE flux 10/9 10/ 8 10/8 Benchmark
Roe flux 5/5 20/19 20/19

Johannes Wendler, DLR-SP, 07.11.2025

Result Inlining ‘#7
DLR

= Other strategy for inlining:
= attribute__ ((flatten)) 12 o
* Inlines all calls inside a function " flatten

Runtimes AD

" Speedups

Functor __[noAD___|AD______

PDE flux 1.55 1.36
Roe flux 1.62 1.39

Runtime [s]

* MAQAO: function calls inside loop

default flatten
no AD/AD |no AD/AD

Augmentation PDE flux Roe flux
Augmentation 0/ 1 0/0 Benchmark
PDE flux 10/ 9 8/8 " All calls in flattened version are to

“unknown® functions

Aol /9 18718 => misinterpretation by MAQAQO?

Johannes Wendler, DLR-SP, 07.11.2025

DLR

__ -
& 5

_
[
o

- =T O m———
; |4|1ﬂ1111jnﬂ34_qﬂ1;4,11.nﬂ.m14nﬂn|ﬂ4 YRR jﬁﬂ.«
A

;
...,_,

L1

L
LA
L
¥

CONCLUSION

<
N

Conclusion ‘#7
DLR

" Pro:

" Very usefull for all kinds of performance metrics
" Even without HPM counters: benchmark suite, pinning capabilities

" Con:

" Limited by capabilities of used hardware
" Clunky to use with everything that has to be paid attention to, to not mess up
" Manual instrumentation

Perf Tools

" Pro:
" Easy to get going with sampling approach
" Insights into “hotness” of assembly instructions

" Con:
" Does not tell you why an instruction may be hot

Johannes Wendler, DLR-SP, 07.11.2025

Conclusion ‘#7
DLR

OSACA

" Pro:
" Small tool, easy to get going with

" Con:
" Limited capabilities (just port pressure and loop carried dependencies)
" Manual instrumentation inside assembly code
" Hard to interpret results

MAQAO

" Pro:
" Very powerful tool, with almost too many features
" Static analysis gives even hints to possible optimizations
" No other tool found so far that can give you info about register usage

" Con:
" Not well documented (lots of try and error)
" Much manual input and reading needed to filter and analyse the important parts

Johannes Wendler, DLR-SP, 07.11.2025

Conclusion ‘#7
DLR

= Know-How with tools

= Bottlenecks
* Memory latency seems not to be a problem so far
= Removing DIV ops maybe helpful where it is easy to do
= Inlining is the game changer

= Port the inlining strategies to the actual production code
= See if then register spilling is a problem
= Extend the gained knowledge to HyperCODA

Johannes Wendler, DLR-SP, 07.11.2025

Imprint 4#7
DLR

Topic: Accelerating the FlowSimulator
Low-levelAnalysis and Optimization of CODA Kernels

Date: 2025-11-07
Author: Johannes Wendler
Institute: DLR - SP

Image sources:All images “DLR (CC BY-NC-ND 3.0)” unless otherwise stated

Johannes Wendler, DLR-SP, 07.11.2025

	Accelerating the FlowSimulator
	Motivation
	Motivation (2)
	Recap of IPTW 2023
	Microbenchmarks
	Microbenchmarks (2)
	Microbenchmarks - Loops
	Microbenchmarks - Functors
	Tools
	Dynamic Analysis
	Static Analysis
	Results
	Results (2)
	LIKWID
	LIKWID (2)
	OSACA + MAQAO
	MAQAO + Perf Tools
	Optimization Strategies
	Results div opt
	Result prefetching
	Result Inlining
	Result Inlining (2)
	Result Inlining (3)
	COnclusion
	Conclusion
	Conclusion (2)
	Conclusion (3)
	Thank you
	Imprint

