
1 Johannes Wendler, DLR-SP, 07.11.2025

Low-level Analysis and Optimization of CODA Kernels

ACCELERATING THE
FLOWSIMULATOR

2

Motivation

 Computational Fluid Dynamics (CFD)
 Accurate prediction of fluid flows

 High demands on computational resources

 Continuous performance analysis and
optimization is key to efficient utilization of
HPC resources

 CODA is shown to scale well, but what
about node-level performance?

Johannes Wendler, DLR-SP Dresden, IPTW 05.10.2023

DLR (CC-BY 3.0)

© DLR. Alle Rechte vorbehal
ten

https://www.dlr.de/de/service/impressum
https://www.dlr.de/de/service/impressum
https://www.dlr.de/de/service/impressum
https://www.dlr.de/de/service/impressum
https://www.dlr.de/de/service/impressum
https://www.dlr.de/de/service/impressum
https://www.dlr.de/de/service/impressum

3 Johannes Wendler, DLR-SP Dresden, IPTW 05.10.2023

Motivation

 Flow solver written by
 ONERA

 DLR

 Airbus

 Many other European partners

CODA

 User scenarios written in Python, solver
core written in C++

 Hybrid parallelization, computation &
communication overlap

 Spliss as linear solver

Coding

4 Johannes Wendler, DLR-SP Dresden, IPTW 05.10.2023

 Both inner face loops together account for ~90%
of runtime

 Performance of them is < 20% of Roofline
 Bottleneck unclear

 Outlook:
 A deeper look into the assembly code

necessary

Recap of IPTW 2023

5 Johannes Wendler, DLR-SP, 07.11.2025

MICROBENCHMARKS

6 Johannes Wendler, DLR-SP, 07.11.2025

Microbenchmarks

 Loops are large and contain many different sub parts from different
Classes/Functions

 Many similar symbols with long names (10-15 lines +) in one compilation unit

 Preprocessing of actual physical meshes/data takes some time

Why?

How?

 Create a minimal (non physical) dataset

 mimick the CODA access pattern (just OMP parallel)

 Create functors with just a subset of the operations of the actual functors,
increasing the complexity and completeness step by step

7 Johannes Wendler, DLR-SP, 07.11.2025

Microbenchmarks - Loops

Loop

Indices &
Data

Indirect
Indices

Functor

• OPM parallel

• Optionally loop over index array
• Has variable blocks of stride-one pattern. Then

jumping to a different part of the data indices
• Emulate indirect access pattern of unstructured grids

• Pass the Data and the index of the “Grid Cell“ to the functor

• Perform a computation on the “Grid Cell“
• Can have variable in- and outputs
• Loop can be called with different functors

8 Johannes Wendler, DLR-SP, 07.11.2025

Microbenchmarks - Functors

 Compute intermediate state variables from state variables, physical
constants and parameters (i.e. compute pressure from the perfect gas law)

Augmentation

PDE flux

 Compute the (convection-) flux of the Partial Differential Equation (from the
intermediate state)

Roe flux

 Compute the Roe approximate flux between two cells (from the fluxes of two
neighboring cells)

9 Johannes Wendler, DLR-SP, 07.11.2025

TOOLS

10 Johannes Wendler, DLR-SP, 07.11.2025

Dynamic Analysis

 Manual instrumentation of code

 Measure hardware performance counters (dependent on CPU)

 Access to many different metrics of what happens on the CPU

 May be unreliable data (always sanity check)

LIKWID

Perf Tools

 Samples the program execution

 Can also measure hardware performance counters

 Annotates assembly code with time spent at each binary block / instruction

11 Johannes Wendler, DLR-SP, 07.11.2025

Static Analysis

 Manual marker insertion into assembly code

 Analyzes the loop between those markers

 Gives information about execution port pressure and loop carried dependencies
(assuming data is in cache)

OSACA

MAQAO

 Automatically find loops inside binary, can be analyzed seperately by loop ID

 Gives information about several bottlenecks (assuming data is in cache)
 i.e. vectorization ratio of instructions
 Execution port or front end pressure
 Function calls
 Register usage
 …

12 Johannes Wendler, DLR-SP, 07.11.2025

RESULTS

13 Johannes Wendler, DLR-SP, 07.11.2025

Results

 IntelXeonW-2295 (18 phys. Cores)
 Has more counters than our AMD Zen2 Cluster
 Disabled boost @ 2.25 GHz

 Pmax = 2.25 GHz x 18 cores x 2 ports x 4 AVX x 2 fma = 648 Gflops/s

 Measured peak memory bandwidth: 72.7 GB/s

Measure Environment

Compilers

 GCC 11.4.0

 Clang 17.04

 Flags:
 -fverbose-asm -Ofast -DNDEBUG -mtune=native -march=native -fno-finite-math-only

14 Johannes Wendler, DLR-SP, 07.11.2025

LIKWID

 Functors in order have rising
complexity

 AD has not as much impact on the
PDE flux (no complicated sqrt op?)

 Roofline performance sub par
 AD less impacted: maybe it hides a

bottleneck

 The two flux Functors in particular
seem to also have a different
bottleneck than memory

15 Johannes Wendler, DLR-SP, 07.11.2025

LIKWID

 Clang seems to be worse in some
cases

 For AD Clang is consistently worse

 New hint: Memory Stall cycles
 Was not possible on AMD Zen2
 We are waiting on memory without the

bandwidth being exhausted
 Could be a latency problem

16 Johannes Wendler, DLR-SP, 07.11.2025

OSACA + MAQAO

 Busy cycles of front- and back-end

 Final cycle estimation per iteration

 Comparison of static L1 prediction and
LIKWID measurements

Port Pressure / Loop Cycles

Functor MAQAO / OSACA
No AD / AD

LIKWID
No AD / AD

Augmentation 24.5 - 26 / 64.5-66 25.6 - 27.9 / 50.7 - 51.9

PDE Flux 43.25 / 67.5 28.9 - 30.8 / 39.1 - 40.5

Roe Flux 26.75 / 46.25 ~181.0 / 261.0

 Static analysis maybe overestimates div ops

 Roe flux estimation does not match measurements
=> completely different bottle neck

17 Johannes Wendler, DLR-SP, 07.11.2025

MAQAO + Perf Tools

 Op queue for DIV / SQRT
 For Augementation / PDE flux

 Hint: remove those ops if possible

 No vectorization
 For all functors

 Hint: stride-1 access => reorganize arrays of structures to structures of arrays

 Function calls
 For PDE flux / Roe flux

 Hint: inlining

 Used register count => for Roe flux the amount of registers is exhausted

MAQAO code quality analysis

 Hottest instructions are div instructions

 Very few MOV ops were slightly hotter than usual => maybe memory latency issues

Perf Tools

18 Johannes Wendler, DLR-SP, 07.11.2025

Optimization Strategies

 Remove redundant DIV ops
 Augmentation has 1 easy to remove DIV

 Manual prefetching to alleviate memory latency problems
 Can be worked into all functors with a few lines of code

 Inlining
 Experiment with compiler flags
 Add compiler hints into code

Low hanging fruits

19 Johannes Wendler, DLR-SP, 07.11.2025

Results div opt

 Speedup
 No AD: 1.144
 AD: 1.053
 Inside uncertainty intervals

 MAQAO loop cycles prediction:
 No AD: 4 cycles less
 AD: 8 cycles less
 Does not match LIKWID measurements
 Inside uncertainty intervals

 Speedup inconclusive with positive bias

20 Johannes Wendler, DLR-SP, 07.11.2025

Result prefetching

 Prefetching with many different
strides (more than shown here)

 Small gains, but within uncertainty
intervals

 Looks worse for AD
 Memory stall cycles

 show that we should be waiting on
memory less

 More so for AD

 Hints that this is not the dominant
bottleneck or stall counters are
unreliable

21 Johannes Wendler, DLR-SP, 07.11.2025

Result Inlining

 Experiments with compiler flags

 Stay with GCC here, as clang has different flags

 Inline flags:

--param inline-unit-growth=200 --param inline-min-speedup=1

 Aggressive inline flags:

--param inline-unit-growth=1000 --param inline-min-speedup=1

22 Johannes Wendler, DLR-SP, 07.11.2025

Result Inlining

 No AD
 Only the Roe flux benefits here
 Many functions still not inlined

 AD
 PDE flux and Roe flux just slightly better
 Many functions still not inlined

 MAQAO: function calls inside loop

Functor default
no AD / AD

inline
no AD / AD

aggressive
no AD / AD

Augmentation 0 / 1 0 / 0 0 / 0

PDE flux 10 / 9 10 / 8 10 / 8

Roe flux 5 / 5 20 / 19 20 / 19

23 Johannes Wendler, DLR-SP, 07.11.2025

Result Inlining

 Other strategy for inlining:
 __attribute__((flatten))
 Inlines all calls inside a function

 Speedups

Functor no AD AD

PDE flux 1.55 1.36

Roe flux 1.62 1.39

 MAQAO: function calls inside loop
Functor default

no AD / AD
flatten
no AD / AD

Augmentation 0 / 1 0 / 0

PDE flux 10 / 9 8 / 8

Roe flux 5 / 5 18 / 18

 All calls in flattened version are to
“unknown“ functions
=> misinterpretation by MAQAO?

24 Johannes Wendler, DLR-SP, 07.11.2025

CONCLUSION

25 Johannes Wendler, DLR-SP, 07.11.2025

Conclusion

 Pro:
 Very usefull for all kinds of performance metrics
 Even without HPM counters: benchmark suite, pinning capabilities

 Con:
 Limited by capabilities of used hardware
 Clunky to use with everything that has to be paid attention to, to not mess up
 Manual instrumentation

 Pro:
 Easy to get going with sampling approach
 Insights into “hotness“ of assembly instructions

 Con:
 Does not tell you why an instruction may be hot

LIKWID

Perf Tools

26 Johannes Wendler, DLR-SP, 07.11.2025

Conclusion

 Pro:
 Small tool, easy to get going with

 Con:
 Limited capabilities (just port pressure and loop carried dependencies)
 Manual instrumentation inside assembly code
 Hard to interpret results

 Pro:
 Very powerful tool, with almost too many features
 Static analysis gives even hints to possible optimizations
 No other tool found so far that can give you info about register usage

 Con:
 Not well documented (lots of try and error)
 Much manual input and reading needed to filter and analyse the important parts

OSACA

MAQAO

27 Johannes Wendler, DLR-SP, 07.11.2025

Conclusion

 Know-How with tools

 Bottlenecks
 Memory latency seems not to be a problem so far
 Removing DIV ops maybe helpful where it is easy to do
 Inlining is the game changer

 Port the inlining strategies to the actual production code

 See if then register spilling is a problem

 Extend the gained knowledge to HyperCODA

Achievements

Next Steps

28 Johannes Wendler, DLR-SP, 07.11.2025

THANK YOU

29 Johannes Wendler, DLR-SP, 07.11.2025

Imprint

Topic: Accelerating the FlowSimulator
Low-levelAnalysis and Optimization of CODA Kernels

Date: 2025-11-07

Author: Johannes Wendler

Institute: DLR - SP

Image sources:All images “DLR (CC BY-NC-ND 3.0)” unless otherwise stated

	Accelerating the FlowSimulator
	Motivation
	Motivation (2)
	Recap of IPTW 2023
	Microbenchmarks
	Microbenchmarks (2)
	Microbenchmarks - Loops
	Microbenchmarks - Functors
	Tools
	Dynamic Analysis
	Static Analysis
	Results
	Results (2)
	LIKWID
	LIKWID (2)
	OSACA + MAQAO
	MAQAO + Perf Tools
	Optimization Strategies
	Results div opt
	Result prefetching
	Result Inlining
	Result Inlining (2)
	Result Inlining (3)
	COnclusion
	Conclusion
	Conclusion (2)
	Conclusion (3)
	Thank you
	Imprint

