7 M

=<
) |
AN y 2
V o

Y 4

.'.' Ay

NCCLSanitizer: Runtime Correctness Checking
Stream-based Communication in NCCL Programs

Felix Tomski (tomski@itc.rwth-aachen.de)
Joachim Jenke
Simon Schwitanski

mailto:tomski@itc.rwth-aachen.de

NCCL: NVIDIA Collective Communication Library

NCCL
e NVIDIA’s collective communication library for GPU-GPU ot cPU
communication um ma
e Topology awareness offers high throughput and low latency
e Comparable libraries by other vendors exist (e.g. AMD’s RCCL, '
Intel's oneCCL) j D ! I
e Predominantly used in ML frameworks (e.g. PyTorch, PCle Switches PCle Switches
TensorFlow)
e Rarely in classical HPC applications and libraries (e.g. Gkeyll,
PyLops)
Why a correctness tool for NCCL programs?
e MPI Forum is working on stream extension for MPI standard
o Multiple prototypes exist that are similar to NCCL's API
e Explore implications of stream-based communication
semantics for correctness tools
e Assist application developers using NCCL S e o
[1]
2 NCCLSanitizer: Runtime Correctness Checking N H R EI:nTF:S:aﬁonal High R“‘I‘H

Stream-based Communication in NCCL Programs Engineering

Felix Tomski, 16th International Parallel Tools Workshop ‘25 Science Performance Optimisation
- and Productivity

A Centre of Excellence in HPC

Performance
Computing

Stream-based communication in NCCL

cudaStream_t stream;
cudaStreamCreate(&stream);
float *d buf;
cudaMalloc(&d buf, count);

kernel<<<stream>>>(d _buf);

ncclAllreduce(d buf, ..., stream);

cudaStreamSynchronize(stream);

NCCL allows

e Sending from / receiving to device buffer (as

GPU-aware MPI)

e Associating communication with device context (stream)
o Fine-grained control over synchronization between

device computation and communication

cudaStream_t stream;
cudaStreamCreate(&stream);
float *d buf;
cudaMalloc(&d buf, count);
kernel<<<stream>>>(d _buf);
cudaStreamSynchronize(stream);

MPI_Allreduce(d buf, ...); // GPU-aware

e Communicator management similar to MPI
o Each rank in communicator associated with GPU
e Requires another distributed-memory communication
protocol for initialization
o We consider NCCL+MPI programs

3 NCCLSanitizer: Runtime Correctness Checking
Stream-based Communication in NCCL Programs
Felix Tomski, 16th International Parallel Tools Workshop 25

NHR
CES

NHR f ? \

Engineerin

S g 9 Performance Optimisation gz::;runtli?ll;ce
cience and Productivity

A Centre of Excellence in HPC

Data races in NCCL programs

Data race Host GPU

e Two execution units streamCreate(S1)
e Unsynchronized access to same memory
e At least one is modifying (a write)

Stream S1

Data races lead to undefined behavior (e.g. crash, corrupted data) streamCreate(50) Wm >0
CUDA streams ncclBcast(buf, S1)

e May run concurrently '\

e Require host-initiated synchronization kernel<<<S@>>>(buf) ’\\

NCCL calls >9 write
e Nonblocking on the host _ a"—e buf
e Blocking on the device (stream) read "‘5’3’2’" ¢

Conflict is always between two kernels, usually on two buf

unsynchronized streams /

e Kernels may result from: NCCL, MPI, user kernel streamSync(Se) '//

Special cases streamSync(s1) |

e Default CUDA stream entails implicit synchronization with other streams
e NCCL groups may lead to races within same stream
o Similar to nonblocking MPI communication within a stream

NHR for
4 NCCLSanitizer: Runtime Correctness Checking N H R Computational 0 0)
Stream-based Communication in NCCL Programs High

Engineering Performance

Felix Tomski, 16th International Parallel Tools Workshop ‘25 ; Performance Optimisation -
P - Science and Productivity Computing

A Centre of Excellence in HPC

RWTH

Deadlocks in NCCL programs

Stream-based Communication in NCCL Programs
Felix Tomski, 16th International Parallel Tools Workshop 25

Engineerin
9 9 Performance Optimisation
and Productivity
A Centre of Excellence in HPC

CES

Performance
Computing

Deadlock Host GPU GPU Host
e [Execution units are in a circular dependency A B B
e Execution gets stuck
ncclBcast ncclBcast
Deadlock may occur if collectives mismatch w.r.t. [sync —
e kind (see example)
e datatype ncclAllreduce ¢~ \ |t ncclReduce
e root rank — — = >
GPU
NCCL deadlocks first manifest on GPU ncclReduce t—_ || @ = dlockk—] ncclAllreduce
e Host blocks on synchronizing with GPU
o Similar to MPI blocking completion
Hybrid deadlocks through interleavings of MPIl and NCCL are possible . \ .
e Host may be blocked due to deviceSync p<=— i “Host A~ devicesync
o synchronization with stream that is blocked deadlock
o (non-local, blocking) MPI call
e GPU (stream) may be blocked due to
o (non-local, blocking) NCCL communication kernel
P2P communication may be part of circular dependency
5 NCCLSanitizer: Runtime Correctness Checking N H R Computational High R“‘I‘H

NCCLSanitizer

Compiler-aided runtime correctness tool 4 N\
for NCCL+MPI programs Application Process MUS/T
- 00
Builds upon MPI correctness tool MUST CuSan Instrumented Application e
and MPI+CUDA data race detector | | |
CuSan
CUDA API Mol CUPTI Events
MPI
| | Distri
MUST f istributed
o Deadlocks in MPI programs * l R A I?A\iaa?lzfsk
@) Data races in noanOCking MPI Data Race Local Deadlock // y
communication and MPI+OpenMP Analysis N > Analysis _ I J
programs - N
\k T j/ [{ Tool Process
MUS I _ J)
CuSan I J
o Data races in GPU-aware MPI A/
communication Data race Deadlock
report report
NCCLSanitizer: Runtime Correctness Checking N H R EI:nTF:S:GTionGI High Rm

Stream-based Communication in NCCL Programs
Felix Tomski, 16th International Parallel Tools Workshop ‘25

CES

Engineering

J Performance Optimisation
Science

and Productivity
A Centre of Excellence in HPC

Performance
Computing

NCCLSanitizer: Detecting data races

Requirements Instrument CuSan Source
e Track synchronization and memory accesses CUDA Kernel Memory — Compiler CUDA, NCCL, MPI
o Accesses come from NCCL calls and CUDA kernels = CUDA Synchronization API Wrapper le.cpp.cul
o Synchronization from CUDA API calls '
o Stream activation/switches / 1 Application Process \
CuSan Instrumented Application
CuSan compiler wrapper I I
e Instrument memory accesses in kernels LD N,\SI:ISIL
e Instrument stream synchronization and switches Cu;an {
: NCCL Stream
Runtime ——— gemantics)

CuSan runtime L7 \y\ Data Race

e Propagate kernel memory accesses and stream SURE SHnEon Iz Analysis
Kernel Memory Accesses NCCL&MPI ————

synchronization+switches to TSan runtime vy Memory
TSan «— Accesses
\ Runtime _ MUST //
e Propagate NCCL memory accesses to TSan runtime i
e Propagate NCCL stream switches to CuSan
Data race
.] report
ThreadSanitizer (TSan) runtime . —
e Perform actual data race detection
7 NCCLSanitizer: Runtime Correctness Checking N H R EI:nTpfS:aﬁonm High Rw.rH

Stream-based Communication in NCCL Programs Engineering Performance
Felix Tomski, 16th International Parallel Tools Workshop 25 C E S Science Performance Optimisation Computing

and Productivity
A Centre of Excellence in HPC

NCCLSanitizer: Detecting data races - Example
Intercepted by Source
CuSan Instrument CuSan
Intercepted by CUDA Kernel Memory — Compiler CUDA, NCCL, MPI
MUST GPU CUDA Synchronization API Wrapper [c.cpp.cu]
t C te(S1
streamCreate(S1) Stream S1 / l Application Process \
streamCreate(S0) wm SO CuSan Instrumented Application
I I
NCCL
ncclBcast(buf, S1) '\ CUD:\API MPI
kernel<<<S@>>>(buf) .\\ CuSan NCCL Stream Y N
\ Runltlm? Semantics
3 'CZ' write CUDA Synchronization \’\ D::lzlljgze
read 'ﬁa"—a ca buf Kernel Memory Accesses ~ NCCL& MPI
buf 14 Memory
TSan | —— Accesses
i MUST
streamSync(S0) / \ Runltlme //
streamSync(S1) T/ v
Data race
Intercepted by R report
eported by
e) . NHR for 0 @
8 NCCLSanitizer: Runtime C Checki i .)
weeismmr sonmcrsencwane — NHRZ- Sntoros (OO w | R\WTH
Felix Tomski, 16th International Parallel Tools Workshop ‘25 Science Performance Optimisation Computing

CES

and Productivity
A Centre of Excellence in HPC

NCCLSanitizer: Detecting deadlocks

Requirements
e Track blocking state of host and GPU streams
o Host blocked from
m MPIcalls
m Synchronization with GPU
o GPU stream blocked from
m NCCL calls

CUPTI adapter
e Track host-GPU synchronization, per
o device
o stream

e Aggregate NCCL calls per group
o Similar to nonblocking MPI calls + Waitall

Distributed deadlock analysis
e Keep track of all processes blocking state
o If all ranks are blocked —deadlock
e Also detects collective mismatches

/ Application Process \
Application
1 1
CUPTI Events NCCL
| |
v \
CUPTI Group
Adapter Preconditioner
MUST 1
CUDA Aggregated
Synchronlzatlon _~ NCCL Calls
_— I
- v e p
P2P Matching Coll Matching Communicator
T—» State Machine <—T Tracking
_ Tool Proces/)

v

/
[[{ Tool Process HRoot Process
)

J

Deadlock
report

9 NCCLSanitizer: Runtime Correctness Checking N H R

Stream-based Communication in NCCL Programs

Felix Tomski, 16th International Parallel Tools Workshop 25 C E S

NHR for

2 :
Conjpu'ra.ﬁonal

Engineering

Science

Performance Optimisation
and Productivity
A Centre of Excellence in HPC

High
Performance
Computing

RWTH

NCCLSanitizer: Detecting deadlocks - Example

Detected by st GPU
Coll Matching A

N

ncclAllreduce $~—__ |
ncclReduce ¢~ |

deviceSync g——"1

-

deadlock

¢ Host |
deadlock

GPU Host Intercepted _by
B B

Group Preconditioner

1 ncclBcast

1 ncclReduce
| _—tncclAllreduce

>t deviceSync

Reported by
State Machine

Intercepted by
CUPTI Adapter

/ Application Process \

Application
1 1
CUPTI Events NCCL
| |
v \
CUPTI Group
Adapter Preconditioner
MUST —1
CU DA Aggregated
Synchronlzatlon _~ NCCL Calls
_— I
- v e p

P2P Matching Coll Matching

Communicator

T—» State Machine

4_? Tracking

Tool Proces/ Y,

v

/
Tool Pr MRoot Process Deadlock
ool Process e
)

J

NHR for '
10 NCCLSanitizer: Runtime Correctness Checking N H R Computational 9 @

Stream-based Communication in NCCL Programs
Felix Tomski, 16th International Parallel Tools Workshop ‘25 C E S Science

Engineering

Performance Optimisation
and Productivity
A Centre of Excellence in HPC

RWTH

High
Performance
Computing

Evaluation: Configurations

baseline
e Application without any analyses
cusan compiled
e CuSan’s race analysis (user kernels only)
must clean
e MUST without any NCCL analyses
must + cusan
e MUST with enabled NCCL analyses (race & deadlock) and CuSan’s race analysis

Preliminary results
e Deadlock not independent of CuSan’s instrumentation
e Will be updated for final paper

NHR for 2
11 NCCLSanitizer: Runtime Correctness Checking N H R Computational

Stream-based Communication in NCCL Programs Engineering

Felix Tomski, 16th International Parallel Tools Workshop ‘25 i Performance Optimisation
p - Science and Productivity

A Centre of Excellence in HPC

High
Performance
Computing

RWTH

Evaluation: Runtime overhead analysis - NCCL Broadcast

NCCL Broadcast: Combined Bus Bandwidth

Benchmark: NVIDIA’s NCCL
Tests
e Only communication

—8— baseline [8 ranks]

©— cusan compiled [8 ranks]

1 —@— must clean [8 ranks]

e No Computation 10! _ —8— must + cusan [8 ranks] 30x
e Only NCCL kernels ‘ X/
e No user kernels
@ 100
Setup: 8 H100 across two &
nodes £
e InfiniBand 50GB/s 3
e One rank per GPU 8 107
e MUST executions use E
additional processes on
second node 1072
Observations
e Further analysis revealed 10-3 -
most overhead results from | 2 ne = T s = =
data race anaIySiS Message Size (Bytes)
NHR for
: sccisma: s comsamss s, NHR 2 Stttna .. | RWTH
Felix Tomski, 16th International Parallel Tools Workshop 25 Science Performance Optimisation Computing

CES

and Productivity
A Centre of Excellence in HPC

Evaluation: Runtime overhead analysis - Jacobi kernel

Multi-GPU Execution Time by Configuration and Number of Ranks

Benchmark: Jacobi kerpel | T Farics [0S} 30
e NCCL P2P communication 30 1 2 ranks 3001
e Computation CUDA kernels S ranes
25 -
Setup: n H100 across two nodes _
e InfiniBand 50GB/s gz"‘ e
e One rank per GPU = 16.54 " mm
. 15.40
e MUST executions use 2 151 14.42 14.38
additional processes on 2 1191 ety 1163 E
second node 101
Observations 5
e Single rank per node CuSan’s
race analysis dominates 5 . ' ' .
e More ranks | %?;\\& &é\\& & <>>‘°0°
o —Less computation per rank ? & &33” -
. O
o —less analysis overhead & €
. . . NHR for 0 @
13 NCCLSanitizer: Runtime Correctness Checking i ”)
Stream-based Communication in NCCL Programs N H R Er?;rp:::i:;nal O mance Rw.rH

Performance Optimisation
and Productivity
A Centre of Excellence in HPC

Felix Tomski, 16th International Parallel Tools Workshop ‘25 Science Computing

Tool development challenges

e MPI offers convenient functions to retrieve information on resources MPI_Comm_split(&newComm)
(communicators, groups, etc.)
o E.g. world ranks in derived communicator
m Needed for global view in deadlock detection

e NCCL only offers small set of getter functions \/ \/

o E.g. no way to deduce the global ranks of ncclCommSplit locally
m Need to mimic logic in NCCLSanitizer
m Implemented through global reduction in NCCLSanitizer
o Additional implementation effort for tool developers
o Additional runtime overhead (through communication &
synchronization)

PMPI_Group_translate_ranks(&worldRanks)

e One rank may manage multiple GPUs
o Rank has multiple communicator handles for same communicator,
each addressing a specific GPU

NHR for '
14 NCCLSanitizer: Runtime Correctness Checking N H R Computational _ R“‘I‘H
Stream-based Communication in NCCL Programs Engineering ;‘g?ormance
Felix Tomski, 16th International Parallel Tools Workshop ‘25 C E S Performance Optimisation Computing

Science and Productivity
A Centre of Excellence in HPC

Summary

NCCL

e Collective Communication Library for GPU-GPU communication

e Allows stream-based communication
e Data races may occur between concurrent streams
e Deadlocks delayed observable at host

NCCLSanitizer
e Dynamic correctness tool for NCCL+MPI programs
e Supports data race and deadlock detection

o GPU streams treated similar to threads in a single process

e Extends MUST and CuSan, uses PMPI| and CUPTI

Runtime overhead
e Data race analysis dominates overhead
e Runtime slowdown of up to 30x for worst case
e Under 3x for kernel including computation

Limitations & Future work
e CUDA Graphs and Events
e AMD’s RCCL+ROCm and other vendor’s libraries

Application Process

~

CuSan Instrumented Application

CUDAAPI A0S CUPTI Events
MPI

\d 4
Data Race Local Deadlock
Analysis Analysis

k MUST

\4

Data race
report

Thank you for your attention!
Questions?

N

Process

Distributed
Deadlock
Analysis

A

Tool Process

J

(

J

Deadlock

report

NHR
CES

15 NCCLSanitizer: Runtime Correctness Checking
Stream-based Communication in NCCL Programs
Felix Tomski, 16th International Parallel Tools Workshop 25

NHR for
Computational
Engineering

Sci Performance Optimisation
cience and Productivity

A Centre of Excellence in HPC

High
Performance
Computing

RWTH

