
NCCLSanitizer: Runtime Correctness Checking
Stream-based Communication in NCCL Programs
Felix Tomski (tomski@itc.rwth-aachen.de)
Joachim Jenke
Simon Schwitanski

mailto:tomski@itc.rwth-aachen.de


NCCLSanitizer: Runtime Correctness Checking 
Stream-based Communication in NCCL Programs
Felix Tomski, 16th International Parallel Tools Workshop ‘25

2

Performance Optimisation 
and Productivity 

A Centre of Excellence in HPC

NCCL: NVIDIA Collective Communication Library

NCCL
● NVIDIA’s collective communication library for GPU-GPU 

communication
● Topology awareness offers high throughput and low latency
● Comparable libraries by other vendors exist (e.g. AMD’s RCCL, 

Intel’s oneCCL)
● Predominantly used in ML frameworks (e.g. PyTorch, 

TensorFlow)
● Rarely in classical HPC applications and libraries (e.g. Gkeyll, 

PyLops)

Why a correctness tool for NCCL programs?
● MPI Forum is working on stream extension for MPI standard

○ Multiple prototypes exist that are similar to NCCL’s API
● Explore implications of stream-based communication 

semantics for correctness tools
● Assist application developers using NCCL

[1]



NCCLSanitizer: Runtime Correctness Checking 
Stream-based Communication in NCCL Programs
Felix Tomski, 16th International Parallel Tools Workshop ‘25

3

Performance Optimisation 
and Productivity 

A Centre of Excellence in HPC

Stream-based communication in NCCL

cudaStream_t stream;

cudaStreamCreate(&stream);

float *d_buf;

cudaMalloc(&d_buf, count);

kernel<<<stream>>>(d_buf);

ncclAllreduce(d_buf, …, stream);

cudaStreamSynchronize(stream);

NCCL allows
● Sending from / receiving to device buffer (as 

GPU-aware MPI)
● Associating communication with device context (stream)

○ Fine-grained control over synchronization between 
device computation and communication

cudaStream_t stream;

cudaStreamCreate(&stream);

float *d_buf;

cudaMalloc(&d_buf, count);

kernel<<<stream>>>(d_buf);

cudaStreamSynchronize(stream);

MPI_Allreduce(d_buf, …); // GPU-aware

● Communicator management similar to MPI
○ Each rank in communicator associated with GPU

● Requires another distributed-memory communication 
protocol for initialization
○ We consider NCCL+MPI programs



NCCLSanitizer: Runtime Correctness Checking 
Stream-based Communication in NCCL Programs
Felix Tomski, 16th International Parallel Tools Workshop ‘25

4

Performance Optimisation 
and Productivity 

A Centre of Excellence in HPC

ncclBcast(buf, S1)

streamSync(S1)

kernel<<<S0>>>(buf)

streamSync(S0)

Data races in NCCL programs

Data race
● Two execution units
● Unsynchronized access to same memory
● At least one is modifying (a write)

Data races lead to undefined behavior (e.g. crash, corrupted data)

Special cases
● Default CUDA stream entails implicit synchronization with other streams
● NCCL groups may lead to races within same stream

○ Similar to nonblocking MPI communication within a stream

Conflict is always between two kernels, usually on two 
unsynchronized streams
● Kernels may result from: NCCL, MPI, user kernel

CUDA streams
● May run concurrently
● Require host-initiated synchronization

NCCL calls
● Nonblocking on the host
● Blocking on the device (stream) read

buf
dat

a r
ace

write
buf

streamCreate(S0)

Host

Stream S0
Stream S1

streamCreate(S1)

GPU



NCCLSanitizer: Runtime Correctness Checking 
Stream-based Communication in NCCL Programs
Felix Tomski, 16th International Parallel Tools Workshop ‘25

5

Performance Optimisation 
and Productivity 

A Centre of Excellence in HPC

Host
deadlock

Deadlocks in NCCL programs

Deadlock
● Execution units are in a circular dependency
● Execution gets stuck

Hybrid deadlocks through interleavings of MPI and NCCL are possible
● Host may be blocked due to

○ synchronization with stream that is blocked
○ (non-local, blocking) MPI call

● GPU (stream) may be blocked due to
○ (non-local, blocking) NCCL communication kernel

P2P communication may be part of circular dependency

Deadlock may occur if collectives mismatch w.r.t.
● kind (see example)
● datatype
● root rank

Host 
A

GPU 
A

Host 
B

GPU 
B

ncclAllreduce ncclReduce

ncclReduce

deviceSync

ncclAllreduce

deviceSync

ncclBcast ncclBcast
sync

GPU
deadlockNCCL deadlocks first manifest on GPU

● Host blocks on synchronizing with GPU
○ Similar to MPI blocking completion 



NCCLSanitizer: Runtime Correctness Checking 
Stream-based Communication in NCCL Programs
Felix Tomski, 16th International Parallel Tools Workshop ‘25

6

Performance Optimisation 
and Productivity 

A Centre of Excellence in HPC

Application Process

MUST

NCCLSanitizer

● Compiler-aided runtime correctness tool 
for NCCL+MPI programs

● Builds upon MPI correctness tool MUST 
and MPI+CUDA data race detector 
CuSan

CuSan Instrumented Application

Data Race
Analysis

Local Deadlock
Analysis

MUST
Tool

Process

Distributed 
Deadlock
Analysis

Tool Process

CUDA API CUPTI EventsNCCL
MPI

Data race
report

Deadlock
report

● MUST
○ Deadlocks in MPI programs
○ Data races in nonblocking MPI 

communication and MPI+OpenMP 
programs

● CuSan
○ Data races in GPU-aware MPI 

communication



NCCLSanitizer: Runtime Correctness Checking 
Stream-based Communication in NCCL Programs
Felix Tomski, 16th International Parallel Tools Workshop ‘25

7

Performance Optimisation 
and Productivity 

A Centre of Excellence in HPC

NCCLSanitizer: Detecting data races
Requirements
● Track synchronization and memory accesses

○ Accesses come from NCCL calls and CUDA kernels
○ Synchronization from CUDA API calls
○ Stream activation/switches

CuSan compiler wrapper
● Instrument memory accesses in kernels
● Instrument stream synchronization and switches

CuSan runtime
● Propagate kernel memory accesses and stream 

synchronization+switches to TSan runtime

MUST
● Propagate NCCL memory accesses to TSan runtime
● Propagate NCCL stream switches to CuSan

ThreadSanitizer (TSan) runtime
● Perform actual data race detection

Application Process

Data race
report

CuSan Instrumented Application

Source
CUDA, NCCL, MPI

[c,cpp,cu]

CuSan 
Compiler
Wrapper

Instrument
CUDA Kernel Memory

CUDA Synchronization API

MUST

Data Race
Analysis

NCCL
MPI

NCCL Stream
Semantics

NCCL & MPI 
Memory

Accesses

CuSan
Runtime

CUDA API

TSan
Runtime

CUDA Synchronization
Kernel Memory Accesses



NCCLSanitizer: Runtime Correctness Checking 
Stream-based Communication in NCCL Programs
Felix Tomski, 16th International Parallel Tools Workshop ‘25

8

Performance Optimisation 
and Productivity 

A Centre of Excellence in HPC

NCCLSanitizer: Detecting data races - Example

Application Process

Data race
report

CuSan Instrumented Application

Source
CUDA, NCCL, MPI

[c,cpp,cu]

CuSan 
Compiler
Wrapper

Instrument
CUDA Kernel Memory

CUDA Synchronization API

MUST

Data Race
Analysis

NCCL
MPI

NCCL Stream
Semantics

NCCL & MPI 
Memory

Accesses

CuSan
Runtime

CUDA API

TSan
Runtime

CUDA Synchronization
Kernel Memory Accesses

kernel<<<S0>>>(buf)

read
buf

streamCreate(S0)

Host

streamSync(S0)

Stream S0

dat
a r

ace

Stream S1
streamCreate(S1)

ncclBcast(buf, S1)

write
buf

streamSync(S1)

GPU

Intercepted by 
CuSan

Intercepted by 
MUST

Intercepted by 
CuSan

Reported by 
TSan



NCCLSanitizer: Runtime Correctness Checking 
Stream-based Communication in NCCL Programs
Felix Tomski, 16th International Parallel Tools Workshop ‘25

9

Performance Optimisation 
and Productivity 

A Centre of Excellence in HPC

Application Process

Application

NCCLSanitizer: Detecting deadlocks
Requirements
● Track blocking state of host and GPU streams

○ Host blocked from
■ MPI calls
■ Synchronization with GPU

○ GPU stream blocked from
■ NCCL calls

CUPTI adapter
● Track host-GPU synchronization, per

○ device
○ stream

Group preconditioner
● Aggregate NCCL calls per group

○ Similar to nonblocking MPI calls + Waitall

Distributed deadlock analysis
● Keep track of all processes blocking state

○ If all ranks are blocked →deadlock
● Also detects collective mismatches

MUST

CUPTI
Adapter

CUPTI Events

Group
Preconditioner

NCCL

Tool Process

P2P Matching

State Machine

Coll Matching

CUDA
Synchronization

Aggregated
NCCL Calls

Deadlock
reportTool Process Root Process

Communicator
Tracking

Aggregated
NCCL Calls



NCCLSanitizer: Runtime Correctness Checking 
Stream-based Communication in NCCL Programs
Felix Tomski, 16th International Parallel Tools Workshop ‘25

10

Performance Optimisation 
and Productivity 

A Centre of Excellence in HPC

Application Process

Application

NCCLSanitizer: Detecting deadlocks - Example

MUST

CUPTI
Adapter

CUPTI Events

Group
Preconditioner

NCCL

Tool Process

P2P Matching

State Machine

Coll Matching

CUDA
Synchronization

Aggregated
NCCL Calls

Deadlock
reportTool Process Root Process

Communicator
Tracking

Aggregated
NCCL Calls

ncclReduce

ncclBcast

Host 
A

deviceSync

ncclAllreduce

GPU 
A

ncclAllreduce

ncclBcast

Host 
B

deviceSync

ncclReduce

GPU 
B

sync

GPU
deadlock

Host
deadlock

Detected by 
Coll Matching

Reported by 
State Machine Intercepted by 

CUPTI Adapter

Intercepted by
Group Preconditioner



NCCLSanitizer: Runtime Correctness Checking 
Stream-based Communication in NCCL Programs
Felix Tomski, 16th International Parallel Tools Workshop ‘25

11

Performance Optimisation 
and Productivity 

A Centre of Excellence in HPC

Evaluation: Configurations

baseline
● Application without any analyses

cusan compiled
● CuSan’s race analysis (user kernels only)

must clean
● MUST without any NCCL analyses

must + cusan
● MUST with enabled NCCL analyses (race & deadlock) and CuSan’s race analysis

Preliminary results
● Deadlock not independent of CuSan’s instrumentation
● Will be updated for final paper



NCCLSanitizer: Runtime Correctness Checking 
Stream-based Communication in NCCL Programs
Felix Tomski, 16th International Parallel Tools Workshop ‘25

12

Performance Optimisation 
and Productivity 

A Centre of Excellence in HPC

Evaluation: Runtime overhead analysis - NCCL Broadcast

Benchmark: NVIDIA’s NCCL 
Tests
● Only communication
● No computation
● Only NCCL kernels
● No user kernels

Setup: 8 H100 across two 
nodes
● InfiniBand 50GB/s
● One rank per GPU
● MUST executions use 

additional processes on 
second node

Observations
● Further analysis revealed 

most overhead results from 
data race analysis

30x



NCCLSanitizer: Runtime Correctness Checking 
Stream-based Communication in NCCL Programs
Felix Tomski, 16th International Parallel Tools Workshop ‘25

13

Performance Optimisation 
and Productivity 

A Centre of Excellence in HPC

Evaluation: Runtime overhead analysis - Jacobi kernel

Benchmark: Jacobi kernel
● NCCL P2P communication
● Computation CUDA kernels

Setup: n H100 across two nodes
● InfiniBand 50GB/s
● One rank per GPU
● MUST executions use 

additional processes on 
second node

Observations
● Single rank per node CuSan’s 

race analysis dominates
● More ranks 

○ →Less computation per rank 
○ →Less analysis overhead



NCCLSanitizer: Runtime Correctness Checking 
Stream-based Communication in NCCL Programs
Felix Tomski, 16th International Parallel Tools Workshop ‘25

14

Performance Optimisation 
and Productivity 

A Centre of Excellence in HPC

Tool development challenges

● MPI offers convenient functions to retrieve information on resources 
(communicators, groups, etc.)
○ E.g. world ranks in derived communicator

■ Needed for global view in deadlock detection

MPI_Comm_split(&newComm)

PMPI_Group_translate_ranks(&worldRanks)

● NCCL only offers small set of getter functions
○ E.g. no way to deduce the global ranks of ncclCommSplit locally

■ Need to mimic logic in NCCLSanitizer
■ Implemented through global reduction in NCCLSanitizer

○ Additional implementation effort for tool developers
○ Additional runtime overhead (through communication & 

synchronization)

● One rank may manage multiple GPUs
○ Rank has multiple communicator handles for same communicator, 

each addressing a specific GPU



NCCLSanitizer: Runtime Correctness Checking 
Stream-based Communication in NCCL Programs
Felix Tomski, 16th International Parallel Tools Workshop ‘25

15

Performance Optimisation 
and Productivity 

A Centre of Excellence in HPC

Summary

Limitations & Future work
● CUDA Graphs and Events
● AMD’s RCCL+ROCm and other vendor’s libraries

Thank you for your attention! 
Questions?

Application Process

MUST

CuSan Instrumented Application

Data Race
Analysis

Local Deadlock
Analysis

MUST
Tool

Process

Distributed 
Deadlock
Analysis

Tool Process

CUDA API CUPTI EventsNCCL
MPI

Data race
report

Deadlock
report

NCCL
● Collective Communication Library for GPU-GPU communication
● Allows stream-based communication
● Data races may occur between concurrent streams
● Deadlocks delayed observable at host

NCCLSanitizer
● Dynamic correctness tool for NCCL+MPI programs
● Supports data race and deadlock detection

○ GPU streams treated similar to threads in a single process
● Extends MUST and CuSan, uses PMPI and CUPTI

Runtime overhead
● Data race analysis dominates overhead
● Runtime slowdown of up to 30x for worst case
● Under 3x for kernel including computation


