
High-Performance
Computing Center
Stuttgart

HPC-Workspace:
A tool for Data Life Cycle Management
Christoph Niethammer, Holger Berger, Maria Hampel, and Martin Schroschk

Outline

HPC-Workspace - IPTW 2025 Stuttgart

● Motivation
● Background & Related work
● HPC-Workspace

○ Concept
○ Usage and commands
○ Implementation
○ Security aspects

● Best-practices
● Outlook & Conclusion

Example HPC infrastructure

HPC-Workspace - IPTW 2025 Stuttgart

GPFSLustre

login node

compute nodes

storage

A simple share is not a solution …

HPC-Workspace - IPTW 2025 Stuttgart

● data life cycle policy enforcement
● transparency of policies
● portability
● security
● efficient resource usage
● administrative effort

Goals

HPC-Workspace - IPTW 2025 Stuttgart

● manage access to the fast HPC (scratch) file system for users
● enforce data life cycle management
● prevent full file systems resulting in performance degradation
● allow load-balancing between various file systems (or within file systems)
● all in a portable way for various HPC platforms and file systems
● minimal maintenance effort

Related work

HPC-Workspace - IPTW 2025 Stuttgart

● High Watermark Deletion
○ Delete files based on size and age when certain filling of the file systems

is reached
○ Deletion process not always transparent to users

● Hierarchical Storage Management
○ uses storage systems with different characteristics and automatically

migrates data based on access patterns
○ Lacks data life cycle management, i.e., data expiration policy

● Quota System
○ uses per user / group limits to prevent exhaustive storage usage
○ lacks life cycle management

HPC-Workspace concept

HPC-Workspace - IPTW 2025 Stuttgart

Introduction of workspaces:
● a workspace is a temporary place for user data
● expires after some time and will be cleaned up/deleted automatically
● has a unique workspace identifier (name) → indirection
● administrator configures on which filesystem resource the associated

directory is created
● can be shared with other users if needed

Workspace lifecycle

HPC-Workspace - IPTW 2025 Stuttgart

Background - Unix file permissions

HPC-Workspace - IPTW 2025 Stuttgart

Unix permission model is based on three roles:
● owner: owning user, all rights - including changing permissions and group
● group: (single) unix group, only granted permissions
● other: everybody else, only granted permissions

Provides permissions for accessing directories and files: read - write - execute

Additional permissions to provide advanced functionality:
● SUID: executable runs as owning user, directory inherits owner
● SGID: executable runs as owning group, directory inherits group
● sticky bit: prevent anybody except the owner from deleting a file/directory

Access control to file system and workspaces

HPC-Workspace - IPTW 2025 Stuttgart

Access to file system and individual workspaces controlled via Unix file
permissions:
● base directory of the file system not writable for users
● workspaces can only be created and modified with ws_* commands
● the user allocating a workspace gets the owner role for the workspace

directory and access rights are restricted to the owner by default
● metadata, e.g., the expiration date for the workspace, are stored in the

workspace DB

HPC workspace commands

HPC-Workspace - IPTW 2025 Stuttgart

command description

ws_allocate Allocate a workspace

ws_list List all active workspaces for a user

ws_find Find the directory path for a given workspace

ws_release Release an active workspace

ws_extend Change the duration of a workspace

ws_restore List/Restore a released or expired workspace

ws_share Share workspace resource with users via ACLs

Workspace allocation

HPC-Workspace - IPTW 2025 Stuttgart

ws_allocate [options] <workspace_name> <duration>
- Allocate a new workspace for <duration> days

Example:
Allocate a workspace named “my_workspace” that will expire in 21 days.

In batchscript:
wd = $(ws_allocate my_workspace 21)
cd $wd

ws_allocate my_workspace 21

Listing and finding workspaces

HPC-Workspace - IPTW 2025 Stuttgart

ws_list [options] [pattern]
- List all workspaces for a user

ws_find [options] <workspace_name>
- Find the path for an existing workspace

Example in script:

wd = $(ws_find my_workspace)
cd $wd

Releasing and deleting workspaces

HPC-Workspace - IPTW 2025 Stuttgart

ws_release [options] <workspace_name>
- Release an active workspace

Example:
Release the workspace my_workspace

● Workspace gets expired immediately and is marked as released
● It can be restored within a short grace period

→ data is still on the file system and counts against the user’s quota!
to delete data immediately and irrecoverably use the --delete-data option

ws_release my_workspace

Extending a workspace

HPC-Workspace - IPTW 2025 Stuttgart

ws_extend [options] <workspace_name> <days>
- set the expiry date to be in <days> days and consume one available

extensions until no extensions are left for this workspace

Example:
Extend the workspace “my_workspace” to expire in 14 days

(implementation detail: ws_extend is a thin wrapper around ws_allocate -x)

ws_extend my_workspace 14

“Workspace expirer” - Admin Tool

HPC-Workspace - IPTW 2025 Stuttgart

Data life cycle policies applied by “workspace expirer” tool:
● workspace state changed to “expired” if its lifetime is exceeded
● workspace directory is moved to a hidden directory on the same file system

that is not accessible to users
○ “fast deletion”
○ no data is removed → data still occupies disk space

● short grace period started → workspace can be restored
● after grace period → workspace and its data are irretrievably deleted
● can be automated with a cron job

ws_expirer [options]

Restoring a workspace

HPC-Workspace - IPTW 2025 Stuttgart

ws_restore [options] <workspace_name> <target_name> | -l
- Restore a released or expired workspace to another workspace

Example:
Restore the released workspace “my_workspace” to the already existing
workspace “another_workspace”

ws_restore -l # this gives the IDs of workspaces that can be restored
usera-my_workspace-1762315512
 unavailable since Wed Nov 5 05:05:12 2025
ws_restore usera-my_workspace-1762252513 another_workspace

Group workspaces

HPC-Workspace - IPTW 2025 Stuttgart

Use case:
● Share workspace with colleagues, e.g., common data set directory

Condition:
● All collaborators need to be in the same group
● Has to be specified at time of workspace allocation (ws_allocate -G <GID>)

● SGID used for subdirectories to inherit permissions
● Group can get read-only access or read and write access

Beware: Write access for collaborators! → quota & cp & ws_release!

Background - Linux Access Control Lists (ACLs)

HPC-Workspace - IPTW 2025 Stuttgart

● ACLs enable fine-grained access control, e.g., access for individual users
● File system must be “ACL-enabled”
● Tools and commands processing files must handle ACLs – attention with cp!!
● Users can list ACLs with the getfacl command:

standard unix permissions are are a subset of ACLs:
[christoph] # ls -l /tmp/hello
-rw-r--r-- 1 christoph christoph 0
[christoph] # getfacl /tmp/hello
file: hello
owner: christoph
group: christoph
user::rw-
group::r--
other::r--

Background - Linux Access Control Lists (ACLs)

HPC-Workspace - IPTW 2025 Stuttgart

● ACLs can be modified with the setfacl command:

● ACL types:
○ users
○ groups
○ mask
○ default

Add read permissions to the http user:
[christoph] # setfacl -m user:http:r /tmp/hello
[christoph] # ls -l /tmp/hello
-rw-r--r--+ 1 christoph christoph 0
[christoph] # getfacl /tmp/hello
file: hello
owner: christoph
group: christoph
user::rw-
user:http:r--
group::r--
other::r--

Share existing workspaces

HPC-Workspace - IPTW 2025 Stuttgart

ws_share <share|unshare> [options] <workspace_name> <user>
● give read access to an existing/active workspace via ACLs

○ e.g., for support staff to work on bugs or share software installations with
others

Example:
Share the workspace another_workspace with userb

Beware: ACLs might not grant access if data are copied into a workspace after
using ws_share; path to workspace has to be exchanged by users manually

ws_share share another_workspace userb

History of HPC-Workspace

2004 2023

version 0
● some python tools
● DB format simple

list
● unstructured simple

config file
● later .ini file

version 1
● C++ for SUID

programs
● new YAML based

configuration

version 2
● complete rewrite

in C++17
● switch to “modern

cmake”
● modularisation
● extensive test

setup
● lots of code

hardening …
● improved logging

version 1.3
● Group

workspaces
(1.3.5)

v0 1.0 - 1.3 1.4 1.5

2020 2022 2026

2.0beta

version 1.4
● ws_share
● user default

settings in
~/.ws_user.conf

2013

C++

2010

.ini

Global configuration file

HPC-Workspace - IPTW 2025 Stuttgart

Configuration file is stored under /etc/ws.conf

clustername: vulcan # name to identify the system
admins: [root] # list of admins
default: ws3 # default workspace
dbuid: 1 # user id, owner of workspace top-level directories
dbgid: 1 # group id, owner of workspace top-level directories
duration: 60 # max. duration in days
maxextensions: 3 # number of extensions
[...] # other options like default lifetime settings
workspaces:
 ws3: # name of workspace location
 database: /lustre/ws3/var/ws/db # DB directory
 deleted: .removed # subdirectory for expired workspaces

keeptime: 5 # time in days to keep the workspace after expiration
 [...]
 spaces: [/lustre/ws3/ws] # list of locations for workspace directories

Workspace Database

HPC-Workspace - IPTW 2025 Stuttgart

The list of workspaces and associated metadata is stored in ws database:
● DBv1 implemented as directory tree
● Full ACID is not really needed → each DB entry is a file in the directory
● Users have read-only on their own DB entries
● POSIX file system semantics offer atomicity and uniqueness of filenames

DB entry of an active workspace

$ cat /lustre/ws3/var/ws/db/user-test
workspace: /lustre/ws3/var/ws/user-test
expiration: 1762339037
extensions: 10
acctcode: forschung
reminder: 0
mailaddress: ""
comment: ""

DB Entry of a released workspace

$ cat /lustre/ws3/var/ws/db/.removed/user-test-1762256796
workspace: /lustre/ws3/var/ws/user-test
expiration: 1762256796
extensions: 10
acctcode: forschung
reminder: 0
mailaddress: ""
released: 1762256796
comment: ""

HPC workspace security: Elevated permissions

HPC-Workspace - IPTW 2025 Stuttgart

Various parts of HPC-workspace need elevated or even root permissions:
● database manipulation (ws_allocate, ws_release, ws_extend, …)
● creation and ownership changes (ws_allocate, ws_release)
● expiration / deletion of workspaces (ws_expirer)

Two supported methods:

SUID:
+ works on all unices
+ works on all filesystems
- coarse grain

Linux capabilities:
+ allow restriction for specific permissions
 (e.g. CAP_CHOWN, CAP_DAC_OVERRIDE)
+ works on root_squash lustre
- require OS and file system support

HPC workspace security: Elevated permissions

HPC-Workspace - IPTW 2025 Stuttgart

● ws tools drop privileges when dealing with user provided data
● elevation only when needed, e.g. accessing filesystem

Example - moving workspace to removed area:

caps.drop_cap(...); // drop all not necessary permissions

...

caps.raise_cap({CAP_FOWNER, CAP_DAC_OVERRIDE}, ...); // raise (needed) permissions

cppfs::rename(wsfilepath, removepath); // perform action requiring permissions

caps.lower_cap({CAP_DAC_OVERRIDE, CAP_FOWNER}, ...); // lower permissions again

...

More security aspects

HPC-Workspace - IPTW 2025 Stuttgart

● very strict input validation
e.g., workspace names restricted to avoid any issues with unicode complexity

● using C++ STL types wherever possible for type checking
● avoiding raw pointers to minimizes risks of memory safety issues

if raw pointers are unavoidable use gsl::nonull<T*>

● number of setuid tools kept at a minimum
● static binaries
● sanitizer checks

Software testing

HPC-Workspace - IPTW 2025 Stuttgart

● Unit tests with Catch2
● CI/CD pipeline running static code analyzers (docker based)
● bats integration and command tests
● various sanitizers in test runs
● VM test setup to test suid/capability functionality (not possible in docker

environment)
● test coverage checking

Best Practices - as a User

HPC-Workspace - IPTW 2025 Stuttgart

● Use ws_find <workspace-ID> instead of hard coded paths
● Use multiple workspaces, to help load balancing (important on lustre DNE)
● Use ws_register to keep track of your workspaces (manages links)
● Get calendar entries via ws_ical to keep track of expiration dates
● Set mail reminder at allocation
● “ws_quickcheck“

Best Practices - as an Administrator

HPC-Workspace - IPTW 2025 Stuttgart

● Disable expirer during maintenance periods!
● DBv1 directories are good candidates for DOM (data on metadata)

directories in lustre, files are very small
● always do a ws_expirer dryrun when changing anything
● put DB in same file system as data if possible to ensure that always both are

available at the same time (expirer checks since a while if DB is really a
marked DB)

● V2 brings ws_editdb to, e.g., alter workspace expiration to compensate
downtimes

Outlook

HPC-Workspace - IPTW 2025 Stuttgart

HPC-Workspaces v2:
● Performance improvements
● improve backward compatible with version 1
● split configuration using several files
● new options for some tools (e.g. deletion of expired workspaces)
● more consistent command options (e.g. group workspaces)
● apply more security techniques, e.g. STL hardening
● even more tests

Conclusion

HPC-Workspace - IPTW 2025 Stuttgart

● HPC-workspace is a proven tool for data life cycle management in HPC
● Good user acceptance due to stable and scriptable UI
● Version 2 coming soon with many improvements ...

High-Performance
Computing Center
Stuttgart

HPC-Workspace

Thanks for your attention!

Christoph Niethammer, Holger Berger, Maria Hampel, and Martin Schroschk

