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Motivation

Aggregate energy usage (in kWh or J), or the total FLOPs over all traced 
locations and compute that energy/FLOP for all of the used cluster

⚫ Program Execution

⚫ Application Tracing: Score-P, lo2s, …

⚫ Tracing Plugin: Score-P power and energy event plugin counters, ...

⚫ Trace File Format: OTF2 (no changes necessary)

⚫ Scalable Trace Analysis: Vampir

Goal: Extend the scalable analysis that can be applied after trace recording
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Metric Visualization in Vampir
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Goal

Given:

⚫ Time-value pairs for power for each core and FLOPS for each thread

⚫ A target location: node i7190 (or machine)

Compute the energy per FLOP by:

1) For all descendant locations of the target location, sum up the monotonically 

increasing FLOPs and energy counters

2) Differentiate the sum-aggregated timelines to get Watt per node (or machine) and 

FLOPS (FLOPs per second)

3) Divide the timelines to get performance (FLOPS) per Watt
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Metric Expressions in Vampir

⚫ A generic metric expression 

language to combine various 

events already exists

⚫ This expression tree is only applied 

location-wise because of the 

distributed nature of 

Vampir’s architecture

→A new cross-location operation is 

needed.

→ Specifying all input locations is 

cumbersome and might lead to 

complex communication patterns

→ Introduce an “Aggregate” operation leveraging the hardware hierarchy ⇒ Score-P
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Metric Plugin API

⚫ lo2s and Score-P share a common metric plugin API, 

which serves as the basis for a broad range of system-

specific plugins

⚫ Metric recording is limited to:

⚫ Machine level

⚫ Node level

⚫ Process level

⚫ Thread level

⇒ All metrics are attributed to this level

⇒ System tree and plugin API needs to be extended to allow 

proper attribution of metric measurement points
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Portable Hardware Locality: hwloc

⚫ Goal: simplify the process of discovering hardware 
resources in parallel architectures

⚫ Software provides portable command-line tools and 
a C API for consulting these resources, their locality, 
attributes, and interconnections

⚫ Obtains the hierarchical map of processing 
elements within a compute node

⚫ Involved elements: NUMA memory nodes, shared 
caches, processor packages, cores, processing 
units (logical processors or "threads"), memories, 
PCI devices, GPUs, …

https://www.open-mpi.org/projects/hwloc/
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Integrating hwloc into Score-P

⚫ Since hwloc primarily aims at helping high-performance computing (HPC) 
applications and is part of Open MPI, it is a natural choice for Score-P integration.

⚫ Use embedded building mode to prefix all hwloc_ functions with 

SCOREP_Libhwloc_ instead, so that it will not clash with the hwloc version 

used by the traced user code or other runtimes/libraries

⚫ Runs of single-child chains are merged into one node to simplify the hierarchy,

e.g., cores, L1i, L2d, and L2 caches

⚫ PCI bridges are skipped for networking and accelerator devices

⚫ Because Score-P is a multi-process measurement system, a conflict resolution 

arbitration process is implemented using an all-to-all communication of all 

collected system tree nodes across all participating processes

⚫ The first in the sorted set of processes owning the node is responsible for any

metrics ⇒ each node in all trees is marked is-responsible only once
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Metric Plugin API Primer

Different recording modes available:
• (Strict) synchronous → Reads metrics at every/most Enter/Leave event
• Asynchronous → Periodic sampling of metrics

Broken down plugin protocol:
1. Operator (lo2s or Score-P) loads and inits plugin
2. get_event_info(<token>) Called once for each user provided <token> to 

get list of possible metrics to record. Includes name and metadata such as value 
type, unit, …

3. add_counter(<metric-name>) Called once for each metric if this process is 
responsible for the metric (machine, host), returns <metric-id>

4. synchronize(<point>): Called at the start and end of the measurement
5. get_all_values(<metric-id>) Called for each metric once, returns 

a (timestamp, value) list
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Extended Metric Plugin API

Problems:
• Metrics with multiple measurement points need a unique name , so 

that add_counter(<metric-name>) works as expected ("[<index>]" suffix)
• All measurement points are on the host in the system tree

Changed plugin protocol:
1. Added new topology level
2. add_counter(<metric-name>) unchanged, but no need for made up unique 

metric names
3. Instead of add_counter(<metric-name>) a 

new add_topology_counters(<topology>, <metric-name>) is called
• Topology is a simple first-child/next-sibling linked tree structure with a type, a 

polymorphic ID, and the is-responsible field
• Returns a (<metric-id>, <node>) list for all matched and is-responsible nodes
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Extended Metric Plugin API: Adaptations

Converted two metric plugins:
1. https://github.com/score-p/scorep_plugin_x86_energy

2. https://github.com/score-p/scorep_plugin_rocm_smi

x86_energy

• Measures RAPL metrics on packages, cores, …
• Polymorphic node ID for such types contains OS index of entity

rocm_smi

• Measures GPU metrics via ROCm SMI API
• Polymorphic node ID for PCI types contains the PCI BDF of the device

→ Score-P provides sub-node hardware hierarchy with proper metric attribution ⇒ Vampir

https://github.com/score-p/scorep_plugin_x86_energy
https://github.com/score-p/scorep_plugin_rocm_smi
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Vampir's Aggregate Operation

The operation tree is sent as a reverse polish notation expression to the server:

"2" "stairstep" source-counter "sum" aggregate "0" diff-quot

"4" "stairstep" source-counter "sum" aggregate "0" diff-quot /
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Requirements

Scalability:

⚫ Use Vampir architecture to process locations in parallel as best as possible

⚫ Necessary communication should avoid sending all trace events through the 

network for each query

Simplifications:

⚫ Only aggregate monotonically increasing timelines because these suffer less 

from aliasing / sampling errors
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Vampir Architecture
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Query Computation

1. Send metric expression and requested target location to Vampirserver
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Query Computation

2. Look for aggregate operations in metric expression and extract the operation 

subtrees / subexpressions
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Query Computation

3. Aggregate the timeline for all descendants of the target location by requesting 

timelines from the workers and merging them
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Query Computation

4. Merge the merged timelines into one timeline for the target location
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Query Computation

5. Repeat for the second subexpression (PAPI_FP_OPS), the input to the second 

aggregate operation
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Query Computation

5. Repeat for the second subexpression (PAPI_FP_OPS), the input to the second 

aggregate operation
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Query Computation

6. Compute outer expression (derive by time and divide it) using the intermediary 

results and return the overall result
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Results
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Resulting lo2s Trace
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Other Improvements

⚫ The Performance Radar now can be 

hierarchically grouped just like the Master 

Timeline

⚫ The Performance Radar, System Tree, and 

Master Timeline can now show multiple metrics

⚫ The timelines only allow multiple metrics as 

long as their measuring points do not overlap.
⚫ Improve Graphviz DOT file output of otf2-

print --system-tree and add the list of 

recorded metrics per location
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Summary

⚫ Added support for subnode system tree levels and hwloc to Score-P metric 

plugin interface

⚫ Extended energy plugin to attribute counters on the correct system tree node

⚫ Added new aggregate operations to the Vampir metric expression language

⚫ Use the system tree to implement those aggregate operations

⚫ Implement a multi-staged algorithm in Vampirserver with a focus on upper 

bounds for the amount of data to be communicated between each stage
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Outlook

⚫ Look into smarter trade-offs between communication message size and aliasing 

errors

⚫ Look into alternative bounded message size schemes, e.g., Fourier coefficients, 

established compression algorithm, ...

⚫ Generalize the concept to nested aggregate operations aggregating over user-

defined system tree levels

⚫ Automatic smart aggregation (collapse node ⇒ aggregation of all children)

⚫ Extend plugin API improvements to supra-node hierarchy, to e.g., record energy 

metrics for a rack

⚫ Extend system tree structure with cross edges between nodes, allows to record 

metrics for the links, e.g., XGMI/NVLink throughput between GPUs, NUMA, IB, 

…


