
Titel der Präsentation • Vortragende • Seite 1

Scalable Metric Calculations Across Hardware 
Levels in Vampir

Maximilian Knespel¹, Bert Wesarg¹⁺², Mikhail Zarubin¹
¹TU Dresden / CIDS / ZIH, ²GWT-TUD GmbH
16th International Parallel Tools Workshop 2025, Stuttgart



Scalable Metric Calculations Across Hardware Levels in Vampir • Maximilian Knespel, Bert Wesarg • Seite 2

Outline

⚫ Motivation

⚫ Hardware Hierarchy in Score-P

⚫ Extended Metric Plugin API for Score-P/lo2s

⚫ Scalable Metric Calculations in Vampir



Scalable Metric Calculations Across Hardware Levels in Vampir • Maximilian Knespel, Bert Wesarg • Seite 3

Motivation

Aggregate energy usage (in kWh or J), or the total FLOPs over all traced 
locations and compute that energy/FLOP for all of the used cluster

⚫ Program Execution

⚫ Application Tracing: Score-P, lo2s, …

⚫ Tracing Plugin: Score-P power and energy event plugin counters, ...

⚫ Trace File Format: OTF2 (no changes necessary)

⚫ Scalable Trace Analysis: Vampir

Goal: Extend the scalable analysis that can be applied after trace recording



Scalable Metric Calculations Across Hardware Levels in Vampir • Maximilian Knespel, Bert Wesarg • Seite 4

Metric Visualization in Vampir



Scalable Metric Calculations Across Hardware Levels in Vampir • Maximilian Knespel, Bert Wesarg • Seite 5

Goal

Given:

⚫ Time-value pairs for power for each core and FLOPS for each thread

⚫ A target location: node i7190 (or machine)

Compute the energy per FLOP by:

1) For all descendant locations of the target location, sum up the monotonically 

increasing FLOPs and energy counters

2) Differentiate the sum-aggregated timelines to get Watt per node (or machine) and 

FLOPS (FLOPs per second)

3) Divide the timelines to get performance (FLOPS) per Watt



Scalable Metric Calculations Across Hardware Levels in Vampir • Maximilian Knespel, Bert Wesarg • Seite 6

Metric Expressions in Vampir

⚫ A generic metric expression 

language to combine various 

events already exists

⚫ This expression tree is only applied 

location-wise because of the 

distributed nature of 

Vampir’s architecture

→A new cross-location operation is 

needed.

→ Specifying all input locations is 

cumbersome and might lead to 

complex communication patterns

→ Introduce an “Aggregate” operation leveraging the hardware hierarchy ⇒ Score-P



Scalable Metric Calculations Across Hardware Levels in Vampir • Maximilian Knespel, Bert Wesarg • Seite 7

Metric Plugin API

⚫ lo2s and Score-P share a common metric plugin API, 

which serves as the basis for a broad range of system-

specific plugins

⚫ Metric recording is limited to:

⚫ Machine level

⚫ Node level

⚫ Process level

⚫ Thread level

⇒ All metrics are attributed to this level

⇒ System tree and plugin API needs to be extended to allow 

proper attribution of metric measurement points



Scalable Metric Calculations Across Hardware Levels in Vampir • Maximilian Knespel, Bert Wesarg • Seite 8

Portable Hardware Locality: hwloc

⚫ Goal: simplify the process of discovering hardware 
resources in parallel architectures

⚫ Software provides portable command-line tools and 
a C API for consulting these resources, their locality, 
attributes, and interconnections

⚫ Obtains the hierarchical map of processing 
elements within a compute node

⚫ Involved elements: NUMA memory nodes, shared 
caches, processor packages, cores, processing 
units (logical processors or "threads"), memories, 
PCI devices, GPUs, …

https://www.open-mpi.org/projects/hwloc/



Scalable Metric Calculations Across Hardware Levels in Vampir • Maximilian Knespel, Bert Wesarg • Seite 9

Integrating hwloc into Score-P

⚫ Since hwloc primarily aims at helping high-performance computing (HPC) 
applications and is part of Open MPI, it is a natural choice for Score-P integration.

⚫ Use embedded building mode to prefix all hwloc_ functions with 

SCOREP_Libhwloc_ instead, so that it will not clash with the hwloc version 

used by the traced user code or other runtimes/libraries

⚫ Runs of single-child chains are merged into one node to simplify the hierarchy,

e.g., cores, L1i, L2d, and L2 caches

⚫ PCI bridges are skipped for networking and accelerator devices

⚫ Because Score-P is a multi-process measurement system, a conflict resolution 

arbitration process is implemented using an all-to-all communication of all 

collected system tree nodes across all participating processes

⚫ The first in the sorted set of processes owning the node is responsible for any

metrics ⇒ each node in all trees is marked is-responsible only once



Scalable Metric Calculations Across Hardware Levels in Vampir • Maximilian Knespel, Bert Wesarg • Seite 10

Metric Plugin API Primer

Different recording modes available:
• (Strict) synchronous → Reads metrics at every/most Enter/Leave event
• Asynchronous → Periodic sampling of metrics

Broken down plugin protocol:
1. Operator (lo2s or Score-P) loads and inits plugin
2. get_event_info(<token>) Called once for each user provided <token> to 

get list of possible metrics to record. Includes name and metadata such as value 
type, unit, …

3. add_counter(<metric-name>) Called once for each metric if this process is 
responsible for the metric (machine, host), returns <metric-id>

4. synchronize(<point>): Called at the start and end of the measurement
5. get_all_values(<metric-id>) Called for each metric once, returns 

a (timestamp, value) list



Scalable Metric Calculations Across Hardware Levels in Vampir • Maximilian Knespel, Bert Wesarg • Seite 11

Extended Metric Plugin API

Problems:
• Metrics with multiple measurement points need a unique name , so 

that add_counter(<metric-name>) works as expected ("[<index>]" suffix)
• All measurement points are on the host in the system tree

Changed plugin protocol:
1. Added new topology level
2. add_counter(<metric-name>) unchanged, but no need for made up unique 

metric names
3. Instead of add_counter(<metric-name>) a 

new add_topology_counters(<topology>, <metric-name>) is called
• Topology is a simple first-child/next-sibling linked tree structure with a type, a 

polymorphic ID, and the is-responsible field
• Returns a (<metric-id>, <node>) list for all matched and is-responsible nodes



Scalable Metric Calculations Across Hardware Levels in Vampir • Maximilian Knespel, Bert Wesarg • Seite 12

Extended Metric Plugin API: Adaptations

Converted two metric plugins:
1. https://github.com/score-p/scorep_plugin_x86_energy

2. https://github.com/score-p/scorep_plugin_rocm_smi

x86_energy

• Measures RAPL metrics on packages, cores, …
• Polymorphic node ID for such types contains OS index of entity

rocm_smi

• Measures GPU metrics via ROCm SMI API
• Polymorphic node ID for PCI types contains the PCI BDF of the device

→ Score-P provides sub-node hardware hierarchy with proper metric attribution ⇒ Vampir

https://github.com/score-p/scorep_plugin_x86_energy
https://github.com/score-p/scorep_plugin_rocm_smi


Scalable Metric Calculations Across Hardware Levels in Vampir • Maximilian Knespel, Bert Wesarg • Seite 13

Vampir's Aggregate Operation

The operation tree is sent as a reverse polish notation expression to the server:

"2" "stairstep" source-counter "sum" aggregate "0" diff-quot

"4" "stairstep" source-counter "sum" aggregate "0" diff-quot /



Scalable Metric Calculations Across Hardware Levels in Vampir • Maximilian Knespel, Bert Wesarg • Seite 14

Requirements

Scalability:

⚫ Use Vampir architecture to process locations in parallel as best as possible

⚫ Necessary communication should avoid sending all trace events through the 

network for each query

Simplifications:

⚫ Only aggregate monotonically increasing timelines because these suffer less 

from aliasing / sampling errors



Scalable Metric Calculations Across Hardware Levels in Vampir • Maximilian Knespel, Bert Wesarg • Seite 15

Vampir Architecture



Scalable Metric Calculations Across Hardware Levels in Vampir • Maximilian Knespel, Bert Wesarg • Seite 16

Query Computation

1. Send metric expression and requested target location to Vampirserver



Scalable Metric Calculations Across Hardware Levels in Vampir • Maximilian Knespel, Bert Wesarg • Seite 17

Query Computation

2. Look for aggregate operations in metric expression and extract the operation 

subtrees / subexpressions



Scalable Metric Calculations Across Hardware Levels in Vampir • Maximilian Knespel, Bert Wesarg • Seite 18

Query Computation

3. Aggregate the timeline for all descendants of the target location by requesting 

timelines from the workers and merging them



Scalable Metric Calculations Across Hardware Levels in Vampir • Maximilian Knespel, Bert Wesarg • Seite 19

Query Computation

4. Merge the merged timelines into one timeline for the target location



Scalable Metric Calculations Across Hardware Levels in Vampir • Maximilian Knespel, Bert Wesarg • Seite 20

Query Computation

5. Repeat for the second subexpression (PAPI_FP_OPS), the input to the second 

aggregate operation



Scalable Metric Calculations Across Hardware Levels in Vampir • Maximilian Knespel, Bert Wesarg • Seite 21

Query Computation

5. Repeat for the second subexpression (PAPI_FP_OPS), the input to the second 

aggregate operation



Scalable Metric Calculations Across Hardware Levels in Vampir • Maximilian Knespel, Bert Wesarg • Seite 22

Query Computation

6. Compute outer expression (derive by time and divide it) using the intermediary 

results and return the overall result



Scalable Metric Calculations Across Hardware Levels in Vampir • Maximilian Knespel, Bert Wesarg • Seite 23

Results



Scalable Metric Calculations Across Hardware Levels in Vampir • Maximilian Knespel, Bert Wesarg • Seite 24

Resulting lo2s Trace



Scalable Metric Calculations Across Hardware Levels in Vampir • Maximilian Knespel, Bert Wesarg • Seite 25

Other Improvements

⚫ The Performance Radar now can be 

hierarchically grouped just like the Master 

Timeline

⚫ The Performance Radar, System Tree, and 

Master Timeline can now show multiple metrics

⚫ The timelines only allow multiple metrics as 

long as their measuring points do not overlap.
⚫ Improve Graphviz DOT file output of otf2-

print --system-tree and add the list of 

recorded metrics per location



Scalable Metric Calculations Across Hardware Levels in Vampir • Maximilian Knespel, Bert Wesarg • Seite 26

Summary

⚫ Added support for subnode system tree levels and hwloc to Score-P metric 

plugin interface

⚫ Extended energy plugin to attribute counters on the correct system tree node

⚫ Added new aggregate operations to the Vampir metric expression language

⚫ Use the system tree to implement those aggregate operations

⚫ Implement a multi-staged algorithm in Vampirserver with a focus on upper 

bounds for the amount of data to be communicated between each stage



Scalable Metric Calculations Across Hardware Levels in Vampir • Maximilian Knespel, Bert Wesarg • Seite 27

Outlook

⚫ Look into smarter trade-offs between communication message size and aliasing 

errors

⚫ Look into alternative bounded message size schemes, e.g., Fourier coefficients, 

established compression algorithm, ...

⚫ Generalize the concept to nested aggregate operations aggregating over user-

defined system tree levels

⚫ Automatic smart aggregation (collapse node ⇒ aggregation of all children)

⚫ Extend plugin API improvements to supra-node hierarchy, to e.g., record energy 

metrics for a rack

⚫ Extend system tree structure with cross edges between nodes, allows to record 

metrics for the links, e.g., XGMI/NVLink throughput between GPUs, NUMA, IB, 

…


