
Recent developments in Archer:
New analyses and support for OpenMP 6.0
Joachim Jenke, 16th IPTW 2025

2

Why do we need data race detection?

C++

➢ The execution of a program contains a data race if it contains two potentially
concurrent conflicting actions, at least one of which is not atomic, and neither
happens before the other, [...]. Any such data race results in undefined behavior.

OpenMP

➢ Multiple threads access the same memory unordered, at least one thread writes. If
a data race occurs then the result of the program is unspecified.

➢ There is no benign data race in C/C++/OpenMP. It is always UB!

Recent developments in Archer: New analyses and support for OpenMP 6.0
16th International Parallel Tools Workshop 2025
Joachim Jenke

https://eel.is/c++draft/intro.races#21.sentence-3

3

Undefined Behavior: What could go wrong?

int test(int n, char *c) {

 if (n == 0)

 return 0;

 return atoi(c);

}

int main(int argc, char **argv) {

 char *buf;

 if (argc > 1) {

 buf = strdup(argv[1]);

 }

 int res = test(argc - 1, buf);

 return res;

}

Recent developments in Archer: New analyses and support for OpenMP 6.0
16th International Parallel Tools Workshop 2025
Joachim Jenke

test:
 test edi, edi
 je .LBB0_1
 push rax
 mov rdi, rsi
 xor esi, esi
 mov edx, 10
 call strtol
 add rsp, 8
 ret
.LBB0_1:
 xor eax, eax
 ret

main:
 push rax
 mov rdi, qword ptr [rsi + 8]
 call strdup
 mov rdi, rax
 xor esi, esi
 mov edx, 10
 pop rax
 jmp strtol

Unconditional
call to strdup

float *lbuf, *rbuf;
lbuf = malloc(n * sizeof(float));
if (rank == 0) {
 rbuf = malloc(n * sizeof(float));
}
MPI_Reduce(lbuf, rbuf, n, MPI_FLOAT, ...);

Similar MPI example:

4

Why do we need Archer?

• valgrind and ThreadSanitizer are agnostic of OpenMP synchronization

• To use valgrind/TSan with libgomp: build with --disable-linux-futex 🤔

• Archer understands all OpenMP synchronization (and concurrency) semantics
and feeds them into TSan’s happens-before analysis

Recent developments in Archer: New analyses and support for OpenMP 6.0
16th International Parallel Tools Workshop 2025
Joachim Jenke

omp barrier

store a

load a

omp barrier

store a

load a
✔Without Archer With Archer

data race reported
Thread 1

Thread 2

Thread 1

Thread 2

5

• Code available from separate github repo

First implementation

Recent developments in Archer: New analyses and support for OpenMP 6.0
16th International Parallel Tools Workshop 2025
Joachim Jenke

2014 • Internship at LLNL 6/14 - 9/14

• Initial implementation using TSan annotations in libomp
− OFF by default, configure with LIBOMP_TSAN_SUPPORT

− Complementary compiler pass to whitelist race-free pieces of code

− Presented as paper at 1st LLVM@SC 2014 workshop

6

Upstreamed to LLVM

Recent developments in Archer: New analyses and support for OpenMP 6.0
16th International Parallel Tools Workshop 2025
Joachim Jenke

2014

2016

• May ’16: IPDPS paper about static analysis
2015

• June ’16: First commit for the OMPT-based tool

• October ’16: libomp patch pushed to llvm repository
− Available with LLVM 4.0 release

− Disabled in default build, enabled in Spack package

7

Finally in LLVM

Recent developments in Archer: New analyses and support for OpenMP 6.0
16th International Parallel Tools Workshop 2025
Joachim Jenke

2014

2015

2016

2017

2018

2019

• March ’19: Updates to make the tool compatible with OMPT 5.0

• November ’19: OMPT-based Archer landed
− Archer is active by default now (if application is built with TSan)

− Available since LLVM 10 release

8

• Several patches (e.g., AVX512 for TSan) pending in review

Today

Recent developments in Archer: New analyses and support for OpenMP 6.0
16th International Parallel Tools Workshop 2025
Joachim Jenke

2014

2015

2016

2017

2018

2019

2020

2021

2023

2024

• Intel shifted towards sanitizers
− Inspector was discontinued

− Archer is available and on by default with Intel compilers (2024.2)

• HPE/Cray compiler supports use of Archer

• AMD’s AOCC compiler packages include Archer

What’s New From OpenMP 6.0?

10

OpenMP 6.0: Transparent tasks

#pragma omp task transparent(omp_export) \

 depend(out:dummy)

{

 for(int i=0; i<MAX_TASKS; i++)

 #pragma omp task depend(in:A[i]) depend(out:B[i])

 foo(A[i], B[i]);

}

#pragma omp task transparent(omp_import) \

 depend(in:dummy)

{

 for(int i=0; i<MAX_TASKS; i++)

 #pragma omp task depend(in:B[i]) depend(out:C[i])

 bar(B[i], C[i]);

}

Recent developments in Archer: New analyses and support for OpenMP 6.0
16th International Parallel Tools Workshop 2025
Joachim Jenke

• In general, OpenMP task
dependencies only apply to siblings

• Transparent tasks import or export
dependencies of their child tasks

11

Handling of Dependencies in Archer

• hashmap<void*, DepObject*> per task, created on demand
− Access only on creation of child tasks → no locking necessary
− Only read, insert, delete. No remove.

• Tasks with dependencies store references to the DepObject* along with the
dependence kind

• DepObject maintains Synchronization Clocks (SC) for in, out, and inoutset.
• dependence kind determines which SC is used to acquire synchronization.

Release synchronization only to dependent kinds

Recent developments in Archer: New analyses and support for OpenMP 6.0
16th International Parallel Tools Workshop 2025
Joachim Jenke

in-Task

in-Task
out-Task

out-Task
inoutset-Task

inoutset-Task

out/inoutset in/out/inoutset

in/out

6.0

12

Transparent Task Dependencies in Archer

• Imported and exported dependencies reside in the parent task’s hashmap
• Transparent tasks can be nested
➢ Nesting only has an effect for nested import or export chains

• Local dependencies are still possible

• The transparent task might need to add new entries to the hashmap → possibly
concurrent access to the hashmap → hashmap needs locking

• For import/export, only acquiring/releasing dependencies wrt. parent task

Recent developments in Archer: New analyses and support for OpenMP 6.0
16th International Parallel Tools Workshop 2025
Joachim Jenke

13

Implementation impact

• Code for tracking dependencies: 15 LoC → 80 LoC (5x)
• Code for annotating dependencies: 6 LoC → 18 LoC (3x)
• In total 140 new LoC: 1276 → 1416 LoC (+11%)

• Locking of hashmap access necessary, as soon as one child task is transparent

• Performance impact:
− No implementation of transparent tasks is available
− Experiment with Fibonacci tasking code shows no performance impact

Recent developments in Archer: New analyses and support for OpenMP 6.0
16th International Parallel Tools Workshop 2025
Joachim Jenke

New Features Beyond Data Race Detection

15

Detect Misuse of OpenMP Locks

➢ A lock-releasing routine must not access a lock that is owned by a task other
than the encountering task.

• Effectively the restriction boils down to “the thread that acquired the lock must
release the lock”.
➢ Such TSan analysis is already available for pthread mutex

• Application use case: misuse as conditional variable

Recent developments in Archer: New analyses and support for OpenMP 6.0
16th International Parallel Tools Workshop 2025
Joachim Jenke

lock(a)

unlock(a)

Thread 1

Thread 2

lock(a)

16

Allow turning Analysis off/on

• Archer already allows to ignore serial region code
➢ (ARCHER_OPTIONS=ignore_serial=1)

• Using the omp_tool_control function, an application can modify tool behavior
➢ OpenMP defines values for start, pause, flush and end

• We use pause+start to disable+enable TSan analysis

Recent developments in Archer: New analyses and support for OpenMP 6.0
16th International Parallel Tools Workshop 2025
Joachim Jenke

17

Summary & Outlook

• With endurance, tenacity, and some effort a summer project can become an
industry standard tool

• Archer is the tool to integrate and test new OMPT features

Next Step:

• Transfer changes into OTF-CPT

Recent developments in Archer: New analyses and support for OpenMP 6.0
16th International Parallel Tools Workshop 2025
Joachim Jenke

