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Why do we need data race detection?

C++

> The execution of a program contains a data race if it contains two potentially
concurrent conflicting actions, at least one of which is not atomic, and neither
happens before the other, [...]. Any such data race results in undefined behavior.

OpenMP

> Multiple threads access the same memory unordered, at least one thread writes. If
a data race occurs then the result of the program is unspecified.

> There is no benign data race in C/C++/OpenMP. It is always UB!
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https://eel.is/c++draft/intro.races#21.sentence-3

Undefined Behavior: What could go wrong?

int test(int n, char *c) { test:

. test edi, edi
if (n == 0) je .LBBO_1
return 0; push rax

. mov rdi, rsi
return atoi(c); xor esi, esi
} mov edx, 10
call strtol
add rsp, 8
int main(int argc, char **argv) { ret
.LBBO_1:
* . —
char *buf; xor eax, eax
if (argc > 1) { ret
buf = strdup(argv[1]); main:
} push rax
. . mov rdi, qword rsi + 8]
int res = test(argc - 1, buf); call strdup
return res; mov rdi, rax
xor esi, esi
} mov edx, 10
pop rax
jmp strtol
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Why do we need Archer?

» valgrind and ThreadSanitizer are agnostic of OpenMP synchronization

* To use valgrind/TSan with libgomp: build with --disable-1inux-futex &

* Archer understands all OpenMP synchronization (and concurrency) semantics
and feeds them into TSan’s happens-before analysis

Thread 1 store a (\data race reported Thread 1 store a
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First implementation

T 201 * Internship at LLNL 6/14 - 9/14

4 LL%  |nitial implementation using TSan annotations in libomp

T — OFF by default, configure with LIBOMP_TSAN_SUPPORT

— Complementary compiler pass to whitelist race-free pieces of code
— Presented as paper at 1st LLVM@SC 2014 workshop

- « Code available from separate github repo
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Upstreamed to LLVM

:I: 2014 -« May '16: IPDPS paper about static analysis

2015

- 2016 , i ,

1 * October ’16: libomp patch pushed to llvm repository

1 — Available with LLVM 4.0 release

4 — Disabled in default build, enabled in Spack package

-  June ’16: First commit for the OMPT-based tool

\/
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Finally in LLVM

2014 « March '19: Updates to make the tool compatible with OMPT 5.0

2015
- 2016
- 2017 « November ’19;: OMPT-based Archer landed
T 2018 — Archer is active by default now (if application is built with TSan)
=1- 2019
L — Available since LLVM 10 release
\/
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Today

2014
2015
2016
2017
2018
2019
2020
2021

2023
2024

Intel shifted towards sanitizers
— Inspector was discontinued

— Archer is available and on by default with Intel compilers (2024.2)
HPE/Cray compiler supports use of Archer
AMD’s AOCC compiler packages include Archer

Several patches (e.g., AVX512 for TSan) pending in review
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What’s New From OpenMP 6.0?

Computing



OpenMP 6.0: Transparent tasks

#pragma omp task transparent(omp_export) \ ° |n general OpenMP taSk

depend (out : dummy ) i ibli
{ epend(out:dummy dependencies only apply to siblings

for(int i=0; i<MAX_TASKS; i++)
#pragma omp task depend(in:A[i]) depend(out:B[i])

foo(AL1], B[1]); « Transparent tasks import or export
dependencies of their child tasks

#pragma omp task transparent(omp_import)
depend(in:dummy)
{
for(int i=0; i<MAX_TASKS; i++)
#pragma omp task depend(in:B[i]) depend(out:C[i])
bar(B[i], C[i]);
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Handling of Dependencies in Archer

6.0

hashmap<void*, DepObject*> per task, created on demand

— Access only on creation of child tasks — no locking necessar

— Only read, insert, delete. No remove.

« Tasks with dependencies store references to the DepObject* along with the

dependence kind

* DepObject maintains Synchronization Clocks (SC) for in, out, and inoutset.
« dependence kind determines which SC is used to acquire synchronization.
Release synchronization only to dependent kinds

out/inoutset in/out/inoutset |
in-Task \ out-Task in/out
e inoutset-Task

in-Task

inoutset-Task
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Transparent Task Dependencies in Archer

Imported and exported dependencies reside in the parent task’s hashmap

Transparent tasks can be nested
> Nesting only has an effect for nested import or export chains

Local dependencies are still possible

The transparent task might need to add new entries to the hashmap — possibly
concurrent access to the hashmap — hashmap needs locking

For import/export, only acquiring/releasing dependencies wrt. parent task

12
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Implementation impact

« Code for tracking dependencies: 15 LoC — 80 LoC (5x)
Code for annotating dependencies: 6 LoC — 18 LoC (3x)
In total 140 new LoC: 1276 — 1416 LoC (+11%)

Locking of hashmap access necessary, as soon as one child task is transparent

Performance impact:
— No implementation of transparent tasks is available
- Experiment with Fibonacci tasking code shows no performance impact
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New Features Beyond Data Race Detection
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Detect Misuse of OpenMP Locks

> Alock-releasing routine must not access a lock that is owned by a task other
than the encountering task.

« Effectively the restriction boils down to “the thread that acquired the lock must
release the lock”.

> Such TSan analysis is already available for pthread mutex

« Application use case: misuse as conditional variable

lock(a) lock(a
Thread 1 @

lock
Thread 2 unlock(a)
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Allow turning Analysis off/on

« Archer already allows to ignore serial region code
> (ARCHER_OPTIONS=ignore_ serial=1)

* Using the omp_tool control function, an application can modify tool behavior
> OpenMP defines values for start, pause, flush and end

* We use pause+start to disable+enable TSan analysis
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Summary & Outlook

« With endurance, tenacity, and some effort a summer project can become an
industry standard tool

* Archer is the tool to integrate and test new OMPT features

Next Step:
» Transfer changes into OTF-CPT
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