Recent developments in Archer:
New analyses and support for OpenMP 6.0

Joachim Jenke, 16th IPTW 2025

High
Performance
Computing




Why do we need data race detection?

C++

> The execution of a program contains a data race if it contains two potentially
concurrent conflicting actions, at least one of which is not atomic, and neither
happens before the other, [...]. Any such data race results in undefined behavior.

OpenMP

> Multiple threads access the same memory unordered, at least one thread writes. If
a data race occurs then the result of the program is unspecified.

> There is no benign data race in C/C++/OpenMP. It is always UB!

2 Recent developments in Archer: New analyses and support for OpenMP 6.0

16th International Parallel Tools Workshop 2025 High Rer

X Performance
Joachim Jenke Computing


https://eel.is/c++draft/intro.races#21.sentence-3

Undefined Behavior: What could go wrong?

int test(int n, char *c) { test:

. test edi, edi
if (n == 0) je .LBBO_1
return 0; push rax

. mov rdi, rsi
return atoi(c); xor esi, esi
} mov edx, 10
call strtol
add rsp, 8
int main(int argc, char **argv) { ret
.LBBO_1:
* . —
char *buf; xor eax, eax
if (argc > 1) { ret
buf = strdup(argv[1]); main:
} push rax
. . mov rdi, qword rsi + 8]
int res = test(argc - 1, buf); call strdup
return res; mov rdi, rax
xor esi, esi
} mov edx, 10
pop rax
jmp strtol
3 Recent developments in Archer: New analyses and support for OpenMP 6.0

16th International Parallel Tools Workshop 2025
Joachim Jenke

- High

Performance
n'] 2 Computing

RWTHAACHEN
UNIVERSITY



Why do we need Archer?

» valgrind and ThreadSanitizer are agnostic of OpenMP synchronization

* To use valgrind/TSan with libgomp: build with --disable-1inux-futex &

* Archer understands all OpenMP synchronization (and concurrency) semantics
and feeds them into TSan’s happens-before analysis

Thread 1 store a (\data race reported Thread 1 store a
Without Archer A} With Archer v
Thread 2 load @ Thread 2 load a
omp barrier omp barrier
4 Recent developments in Archer: New analyses and support for OpenMP 6.0 Rwrl.l

16th International Parallel Tools Workshop 2025 Eigh
. erformance
Joachim Jenke Computing




First implementation

T 201 * Internship at LLNL 6/14 - 9/14

4 LL%  |nitial implementation using TSan annotations in libomp

T — OFF by default, configure with LIBOMP_TSAN_SUPPORT

— Complementary compiler pass to whitelist race-free pieces of code
— Presented as paper at 1st LLVM@SC 2014 workshop

- « Code available from separate github repo

5 Recent developments in Archer: New analyses and support for OpenMP 6.0
16th International Parallel Tools Workshop 2025
Joachim Jenke




Upstreamed to LLVM

:I: 2014 -« May '16: IPDPS paper about static analysis

2015

- 2016 , i ,

1 * October ’16: libomp patch pushed to llvm repository

1 — Available with LLVM 4.0 release

4 — Disabled in default build, enabled in Spack package

-  June ’16: First commit for the OMPT-based tool

\/

6 Recent developments in Archer: New analyses and support for OpenMP 6.0 Rer

16th International Parallel Tools Workshop 2025 High
Joachim Jenke Computing




Finally in LLVM

2014 « March '19: Updates to make the tool compatible with OMPT 5.0

2015
- 2016
- 2017 « November ’19;: OMPT-based Archer landed
T 2018 — Archer is active by default now (if application is built with TSan)
=1- 2019
L — Available since LLVM 10 release
\/
7 Recent developments in Archer: New analyses and support for OpenMP 6.0 Rer

16th International Parallel Tools Workshop 2025 High
Joachim Jenke Computing




Today

2014
2015
2016
2017
2018
2019
2020
2021

2023
2024

Intel shifted towards sanitizers
— Inspector was discontinued

— Archer is available and on by default with Intel compilers (2024.2)
HPE/Cray compiler supports use of Archer
AMD’s AOCC compiler packages include Archer

Several patches (e.g., AVX512 for TSan) pending in review

Recent developments in Archer: New analyses and support for OpenMP 6.0 _
16th International Parallel Tools Workshop 2025 High Rer

Performance
Computing



What’s New From OpenMP 6.0?

Computing



OpenMP 6.0: Transparent tasks

#pragma omp task transparent(omp_export) \ ° |n general OpenMP taSk

depend (out : dummy ) i ibli
{ epend(out:dummy dependencies only apply to siblings

for(int i=0; i<MAX_TASKS; i++)
#pragma omp task depend(in:A[i]) depend(out:B[i])

foo(AL1], B[1]); « Transparent tasks import or export
dependencies of their child tasks

#pragma omp task transparent(omp_import)
depend(in:dummy)
{
for(int i=0; i<MAX_TASKS; i++)
#pragma omp task depend(in:B[i]) depend(out:C[i])
bar(B[i], C[i]);

10 Recent developments in Archer: New analyses and support for OpenMP 6.0 _
16th International Parallel Tools Workshop 2025 High Rw.rH

X Performance
Joachim Jenke Computing



Handling of Dependencies in Archer

6.0

hashmap<void*, DepObject*> per task, created on demand

— Access only on creation of child tasks — no locking necessar

— Only read, insert, delete. No remove.

« Tasks with dependencies store references to the DepObject* along with the

dependence kind

* DepObject maintains Synchronization Clocks (SC) for in, out, and inoutset.
« dependence kind determines which SC is used to acquire synchronization.
Release synchronization only to dependent kinds

out/inoutset in/out/inoutset |
in-Task \ out-Task in/out
e inoutset-Task

in-Task

inoutset-Task

1 Recent developments in Archer: New analyses and support for OpenMP 6.0 _
16th International Parallel Tools Workshop 2025 High Rer

X Performance
Joachim Jenke Computing



Transparent Task Dependencies in Archer

Imported and exported dependencies reside in the parent task’s hashmap

Transparent tasks can be nested
> Nesting only has an effect for nested import or export chains

Local dependencies are still possible

The transparent task might need to add new entries to the hashmap — possibly
concurrent access to the hashmap — hashmap needs locking

For import/export, only acquiring/releasing dependencies wrt. parent task

12

Recent developments in Archer: New analyses and support for OpenMP 6.0 _
16th International Parallel Tools Workshop 2025 25?“"‘“03 Rer
Joachim Jenke Computing



Implementation impact

« Code for tracking dependencies: 15 LoC — 80 LoC (5x)
Code for annotating dependencies: 6 LoC — 18 LoC (3x)
In total 140 new LoC: 1276 — 1416 LoC (+11%)

Locking of hashmap access necessary, as soon as one child task is transparent

Performance impact:
— No implementation of transparent tasks is available
- Experiment with Fibonacci tasking code shows no performance impact

13 Recent developments in Archer: New analyses and support for OpenMP 6.0 _
16th International Parallel Tools Workshop 2025 High Rer
Joachim Jenke Computing



New Features Beyond Data Race Detection

Computing



Detect Misuse of OpenMP Locks

> Alock-releasing routine must not access a lock that is owned by a task other
than the encountering task.

« Effectively the restriction boils down to “the thread that acquired the lock must
release the lock”.

> Such TSan analysis is already available for pthread mutex

« Application use case: misuse as conditional variable

lock(a) lock(a
Thread 1 @

lock
Thread 2 unlock(a)

15 Recent developments in Archer: New analyses and support for OpenMP 6.0 _
16th International Parallel Tools Workshop 2025 ﬂﬁ;‘ormance Rer
Joachim Jenke Computing



Allow turning Analysis off/on

« Archer already allows to ignore serial region code
> (ARCHER_OPTIONS=ignore_ serial=1)

* Using the omp_tool control function, an application can modify tool behavior
> OpenMP defines values for start, pause, flush and end

* We use pause+start to disable+enable TSan analysis

16 Recent developments in Archer: New analyses and support for OpenMP 6.0 _
16th International Parallel Tools Workshop 2025 High Rer

X Performance
Joachim Jenke Computing



Summary & Outlook

« With endurance, tenacity, and some effort a summer project can become an
industry standard tool

* Archer is the tool to integrate and test new OMPT features

Next Step:
» Transfer changes into OTF-CPT

17 Recent developments in Archer: New analyses and support for OpenMP 6.0 _
16th International Parallel Tools Workshop 2025 High Rer

X Performance
Joachim Jenke Computing



