

Center for Information Services and High Performance Computing (ZIH)

Extending the Functionality of Score-P through Plugins: Interfaces and Examples

10th International Parallel Tools Workshop, Oct 5th 2016

Robert Schöne Ronny Tschüter Thomas Ilsche Joseph Schuchart Daniel Hackenberg

READEX

READEX

- Technische Universität Dresden (Coordinator), Germany
- Norwegian University of Science and Technology, Norway
- IT4Innovations, Czech Republic
- Technische Universität München, Germany
- Intel European Exascale Labs, France
- GNS Braunschweig, Germany
- National University of Ireland Galway, Ireland

Demands (Metrics)

- Performance counter metrics
 - Get information on performance bottlenecks and dynamism
 - Part of Score-P
 - PAPI
 - perf
- Non traditional information
 - Open interface for different metrics
 - Power consumption information
 - Different scopes
 - Score-P Metric Plugins interface already available
 - Comparable to VampirTrace plugins [STHI11]

- Consume program events
 - Act according to specific regions
 - Act according to metrics
 - Act depending on location
 - Act on instructions from Online-Access server
 - READEX Runtime Library
- Goal: Adapt HW/SW environment to increase energy efficiency
 - Independent of READEX
 - Different for different architectures \rightarrow exchangeable

Score-P overview

- synchronous/strictly synchronous/asynchronous
- Instantaneous/backward-related/forward-related
- Spatial scope of metrics
 - Per thread/process/computing node/system
- SCOREP METRIC PLUGINS=foo # libfoo.so
- SCOREP METRIC FOO=bar # event bar in libfoo
- Plugins on https://github.com/score-p/

Robert Schöne

European

SPEC OMP applu, measurements with ZES-ZIMMER LMG 450/dataheap, RAPL, and HAEC infrastructure [HIS+13]

NPB-MZ benchmark BT, Class F, 1024 nodes, measurement with HDEEM [HIS+14]

Horizon 2020 European Union funding for Research & Innovation

Synchronous

- Register variables or functions that shall be watched
- Watch for number of read/write/execute access to variable
- E.g.,

SCOREP_METRIC_PERFBREAKPOINT_PLUGIN=x_pthread_mutex_trylock
to watch the number of calls of pthread_mutex_trylock

- Statistic information on accesses to global variables
- Asynchronous
 - Register variables whose content will be watched
 - Parse binary with libbfd, find local & global variables
 - E.g., SCOREP_METRIC_WATCHPOINT_PLUGIN=foo:uint64_t:bar registers the content of the local variable bar, defined in function foo
 - High overhead (from kernel infrastructure), for debugging purposes

Example Watchpoints (Synchronous)

NPB-OpenMP benchmark BT, CLASS W, 4 Threads

Robert Schöne

REA

Example Watchpoints (Asynchronous)

- OpenMP parallel program, 2 Threads
- Threads concurrently write their loop iteration to a global variable
- Depending on scheduling strategy, the content of the global variable changes over time

White:

OMP SCHEDULE=dynamic, 4096

Purple:

```
OMP SCHEDULE=static
```


Robert Schöne

European

Commission

Center for Information Services 8 High Performance Computing

Based on internal Substrate infrastructure

- Management functions related to Score-P internal processing
- Event functions related to program internals
- Only two non-optional functions
- Callbacks for plugins to get metadata for events from Score-P
- export SCOREP_SUBSTRATE_PLUGINS=foo
 - # load libscorep_substrate_foo

European

Commission

Substrate Plugins

- Calls for CPU locations
- All measurement events get location and timestamp
- Plugins can use callbacks to get metadata from handles (e.g., name of entered region, type of location, ...)
- Support for storage of location specific data in Score-P (thread local storage)

Robert Schöne

READ

Examples

- Per region optimization using libadapt
 - As presented in [SM13]
 - Plugin reads config file and registers for enter/exit events to change HW/SW environment
 - DVFS/DCT/low-level hardware options
- Load balancing using DVFS
 - Like [RLdS+09], plus OpenMP
 - Successive execution of (compute region, synchronization region) pairs
 - Slow down computation to arrive just in time for synchronization
 - Plugin registers for enter/exit events
- Event Flow Graphs
 - Based on [AFL14]
 - Write event flow graph of exclusive regions as graphviz diagram.

European

Region Based Optimization

	31.05 s	31.10 s	31.15 s	31.20 s	31.25 s	31.30 s	31.35 s	31.40 s	31.45 s	31.50 s	31.55 s	31.60 s	31.65 s
Master threa Master threa	ad:0 ad:40 ad:105 ad:105 ad:135 ad:135 ad:219 ad:219 ad:229 ad:252 ad:320 ad:320 ad:348 ad:34												
Values of M Master threa Master threa	etric "PAPI_TC ad:21 ad:56 ad:94 ad:123 ad:166 ad:200 ad:200 ad:233 ad:263 ad:263 ad:235 ad:374 ad:374 ad:410 ad:410 ad:449 ad:469 ad:49 ad:49 ad:49	DT_CYC" over	Time in #/s										
50 G		10	100	-							10		3.00
node taurus	1 14095, node ta	.7 G urusi4096. no	de taurusi409	8, and 21 m	ore, Values o	f Metric "hde	em/Blade" ov	er Time	2.5 G	2.	/ u	2.9 (
×	400 300 200 100	~					~~		/			~	
	0					1	5.0						

NPB-MPI benchmark BT, Class D, 576 ranks, optimized version: varying frequency and power consumption (HDEEM)

Load Balancing Substrate

SPEC COSMO FD4 on 4 nodes / 96 ranks, MPI instrumentation, DVFS load balancing, HDEEM

European Commission

Event Flow Graphs

- Record exclusive functions, no nested calls
- E.g., OpenMP parallel regions
- Node = parallel region with specific stack state
- Edge = possible successor
- Node label: region name
- Edge label:
 - No label: Only transition from node
 - Single number N: on Nth iteration
 - Three numbers i,j,k: transition is taken ith, i+kth,...jth execution of predecessor node

. . .

Event flow graphs (NPB lu CLASS A, core loop)

High Performance Computing

Score-P as a common infrastructure for measurement, tuning, and debugging?

- Metric Plugins provide additional status information
- Substrate Plugins make use of Score-P's instrumentation frameworks and metrics to enhance functionality

Substrate Plugin Interface **not final**. Any suggestions? Talk to me in the next coffee break or write an email!

- [RLdS+09] Barry Rountree, David K. Lownenthal, Bronis R. de Supinski, Martin Schulz, Vincent W. Freeh, and Tyler Bletsch. Adagio: Making DVS Practical for Complex HPC Applications. In Proceedings of the 23rd international conference on Supercomputing, pages 460–469. ACM, 2009. DOI: 10.1145/1542275.1542340.
- [STHI11] Robert Schöne, Ronny Tschüter, Daniel Hackenberg, and Thomas Ilsche. The VampirTrace Plugin Counter Interface: Introduction and Examples. In Euro-Par 2010 Parallel Processing Workshops, volume 6586 of Lecture Notes in Computer Science, pages 501–511. Springer-Verlag, 2011. DOI: 10.1007/978-3-642-21878-1_62.
- [HIS+13] Daniel Hackenberg, Thomas Ilsche, Robert Schone, Daniel Molka, Martin Schmidt, and Wolfgang E. Nagel. Power Measurement Techniques on Standard Compute Nodes: A Quantitative Comparison. In Performance Analysis of Systems and Software (ISPASS), 2013 IEEE International Symposium on, pages 194–204. IEEE, 2013.
- [SM13] Robert Schöne and Daniel Molka. Integrating Performance Analysis and Energy Efficiency, Optimizations in a Unified Environment. Computer Science - Research and Development, pages 1– 9, 2013. DOI: 10.1007/s00450-013-0243-7.
- [AFL14] Xavier Aguilar, Karl Fürlinger, and Erwin Laure. MPI Trace Compression Using Event Flow Graphs. In Euro-Par 2014 Parallel Processing, pages 1--12. Springer International Publishing, Cham, 2014. DOI: 10.1007/978-3-319-09873-9_1
- [HIS+14] Daniel Hackenberg, Thomas Ilsche, Joseph Schuchart, Robert Schöne, Wolfgang E Nagel, Marc Simon, and Yiannis Georgiou. HDEEM: High Definition Energy Efficiency Monitoring. In Energy Efficient Supercomputing Workshop (E2SC), 2014, pages 1–10. IEEE, 2014. DOI: 10.1109/E2SC.2014.13.

- Compare trunk, branch, branch with minimal registered plugin
- NPB OpenMP, BT Class A, 24 threads on Haswell dual-socket system
- many short regions, high overhead
- 5 measurements, use mean
- Average time increased by 1.5% if plugin registered, otherwise 0 overhead
- Sampling using perf record

