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Context and Motivation.

Heterogeneous architectures
• Different computing elements.

• Each of them better suited for a type of computation ⇒ high-performance.

• But programming paradigms differ in each component.
• Increased complexity of development, maintenance.

I More bugs.
I Less widespread.

• Programming heterogeneous architectures restricted to a few experts.
I Hinders widespread adoption.

Scientific code
• Performance is a must.

• Non-trivial algorithms, code very optimized for target architecture.

• Many existing algorithms, implementations.

• Deal with them in a cost-effective, safe way ⇒ mechanize.
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Goal.

Develop a framework for sound, semantics-based program transformation of
scientific code in order to improve non-functional characteristics.

Transformation example: from c = av + bv to c = (a + b)v.

Initial code Final code

float c[N], v[N], a, b;

for (int i = 0; i < N; i++)

c[i] = a * v[i];

for (int i = 0; i < N;i++)

c[i] += b * v[i];

float k = a + b;

for(i = 0; i < N; i++)

c[i] = k * v[i];
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Step by Step.

0 - Original 1 - For-Loop Fusion

float c[N],v[N],a,b;

for(int i=0;i<N;i++)

c[i] = a*v[i];

for(int i=0;i<N;i++)

c[i] += b*v[i];

for(int i=0;i<N;i++) {

c[i] = a*v[i];

c[i] += b*v[i];

}

2 - Aug. Addition 3 - Join Assignments

for(int i=0;i<N;i++) {

c[i] = a*v[i];

c[i] = c[i] + b*v[i];

}

for(int i=0;i<N;i++)

c[i] = a*v[i]+b*v[i];

4 - Undo Distribute 5 -Inv. Code Motion

for(int i=0;i<N;i++)

c[i] = (a+b) * v[i];

float k = a + b;

for(int i=0;i<N;i++)

c[i] = k * v[i];
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Goal (Cont.).

Capture and respect common properties

Initial code Final code

Complex c[N], v[N], a, b;

for (int i = 0; i < N; i++)

cmp_mult(v[i], a, c[i]);

Complex aux;

for (int i = 0; i < N;i++) {

cmp_mult(b, v[i], aux);

cmp_add(aux , c[i], c[i]);

}

Complex c[N], v[N], a, b;

Complex k;

cmp_add(a, b, k);

for (int i = 0; i < N;i++)

cmp_mult(k, v[i], c[i]);
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Points to Address.

• Sound.
I Respect functional properties.

• Extensible.
I Different architectures.
I Different domains.

• Targeted.
I Improve (certain) non-functional properties

(which depend on architecture, aims).

Use syntactic and semantic
properties

Use (sets of) rules defining
transformations

Search among applicable
rules
Search Select applicable rule

How to. . .

. . . infer / capture these properties?

. . . express and apply these trans-
formations in an extensible way?

. . . identify the right rule(s)?
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Rules: Extensible Program Transformations



Example: Undo Distributive Property.

for(int i=0;i<N;i++)

c[i] = a*v[i]+b*v[i];

for(int i=0;i<N;i++)

c[i] = (a+b) * v[i];

Transformation rule:

undo_distributive {
pattern: {
(cexpr(e1) * cexpr(e2)) + (cexpr(e1) * cexpr(e3));

}
condition: {
pure(cexpr(e1));
pure(cexpr(e2));
pure(cexpr(e3));

}
generate: {
cexpr(e1) * (cexpr(e2) + cexpr(e3));

}
}

Syntactical pattern

Semantic conditions
(uses predefined properties)

Resulting code
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Example: Invariant Code Motion.

for(int i=0;i<N;i++)

c[i] = (a+b) * v[i];

float k = a + b;

for(int i=0;i<N;i++)

c[i] = k * v[i];

Transformation rule (simplified):

loop_inv_code_motion{
pattern:{

for (cexpr(ind) = cexpr(ini); cexpr(cond); cexpr(mod)){
cexpr(e3) = cexpr(e1) * cexpr(e2); }

}
condition:{

pure(cexpr(e2));
no_reads(cexpr(e2), cexpr(ind));
no_reads(cexpr(e2), cexpr(e3));
no_reads_in_written(cexpr(e2), cexpr(mod));
no_reads_in_written(cexpr(e2), cexpr(e1));
no_reads_in_written(cexpr(e2), cexpr(e3));

}
generate:{

cdecl(ctype(cexpr(e2)),cexpr(aux));
cexpr(aux) = cexpr(e2);
for (cexpr(ind) = cexpr(ini); cexpr(cond); cexpr(mod)){

cexpr(e3) = cexpr(e1) * cexpr(aux);}
}

}

Syntactical
pattern

Semantic conditions
(uses predefined properties)

Resulting code
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The STML Rule Language.

rule_name {

pattern: {...}

condition: {...}

generate: {...}

}

• Inspired by CML [BrownLukKelly 2005], an evolution of CTT
[BoekholdKarkowskiCorporaal 1999].

• STML rules expressed in a subset of C.
• Sections:

I pattern:
F Matches (localizes) code.
F Meta-expressions (cexpr, cstmt, . . . ) substituted by actual symbols before

transformation.
I condition:

F Code properties required by rule (soundness).
I generate: New code, replaces matched section.
I Not shown: (new) properties of generated code.
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STML Constructs.

For all sections

Construct Description
bin op(Eop,E1,E2) represents the binary operation E1 Eop E2
una op(Eop,E) represents the unary operation Eop E

In the condition section

Construct Description
is identity(Eop,E) E is identity element for Eop
no writes(Ev,(S|[S]|E)) Ev is not written onto in (S|[S]|E)

no reads(Ev,(S|[S]|E)) Ev is not read from in (S|[S]|E)

no rw(Ev,(S|[S]|E)) Ev is neither read from nor written onto in (S|[S]|E)

pure((S|[S]|E)) There are no assignments in (S|[S]|E)

is const(E) There are variables inside E

is block(S) S is a block of statements
is commutative(Eop) Operation Eop is commutative
is associative(Eop) Operation Eop is associative
not(Econd) Econd is false
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STML Constructs (Cont.).

In the generate section

Construct Description
subs((S|[S]|E),Ef,Et) Replace each occurrence of Ef in (S|[S]|E) for Et
if then:{Econd;(S|[S]|E);} If Econd is true, then generate (S|[S]|E)

if then else:{Econd; If Econd is true, then generate (S|[S]|E)t,
(S|[S]|E)t;(S|[S]|E)e;} else generate (S|[S]|E)e

gen list:{[(S|[S]|E)];} Each statement/expression in [(S|[S]|E)] pro-
duces a different rule consequent
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Extracting Code Properties



Inferring and Expressing Properties.

loop_inv_code_motion{
pattern:{...}
condition:{

pure(cexpr(e2));
no_reads(cexpr(e2), cexpr(ind));
no_reads(cexpr(e2), cexpr(e3));
no_reads_in_written(cexpr(e2), cexpr(mod));
no_reads_in_written(cexpr(e2), cexpr(e1));
no_reads_in_written(cexpr(e2), cexpr(e3));

}
generate:{...}

}

1 Which properties are
needed?

2 How can we determine
whether they hold?

1 Low-level properties, capture characteristics of imperative languages.
I Destructive assignment & its effects.
I Aliasing.
I Memory management

2 Obtained from:
I Automatic program analysis.
I User-provided pragmas.
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Program Analysis.

• Cetus: source-to-source C compiler written in Java.

• Extensive set of compiler passes working on a high-level IR.
• Analyses and transformations:

I Dependence analysis.
I Loop parallelizer.
I Source program in canonical form.
I Loop outlining (procedural abstraction of loops).

• Read and Write pragmas (OpenMP and STML — explained later)
• Modifications to Cetus:

I Generation of STML annotations.
I Rewriting pass to adapt input code to Cetus (C99).
I Modified Artistic License =⇒ change Cetus without restrictions.
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STML Pragmas.

• Not all properties always automatically inferred.

• #pragmas in code.

#pragma stml writes c in {0}

for (i = 0; i < N; i++)

c[i] = i*2;

#pragma stml writes c in {-1,0}

for (i = 1; i < N; i++) {

c[i-1] = i;

c[i] = c[i-1] * 2;

}

#pragma stml reads c in {-1,0,+1}

for (i = 0; i < N; i++)

a += c[i-1]+c[i+1]-2*c[i];

#pragma stml iteration_space 0 N-1

for (i = 0; i < N; i++)

c[i] = i*2;
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High-Level Annotations.

• Stemming from POLCA project

• Functional programming flavor.
• Capture algorithmic skeletons:

I Summarily capture properties of underlying code.
I Also, can help determine transformation strategies.

#pragma polca map F v w

#pragma polca fold F INI v e

#pragma polca itn F INI n w

#pragma polca zipWith F u v w

#pragma polca scanl F INI v w

#pragma polca map B v c

for(int i=0;i<N;i++)

#pragma polca def B

#pragma polca input v[i]

#pragma polca output c[i]

c[i] = a*v[i];
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Information from Annotations.

What map tells us

#pragma polca map B v c

for(int i=0;i<N;i++)

#pragma polca def B

#pragma polca input v[i]

#pragma polca output c[i]

c[i] = a*v[i];

• v is input to map, c is output.
• For every v[i], c[i] is produced using only v[i].

I No global variables, no dependencies across iterations.

• Computation of c[i] enclosed inside B.

⇒ Pragma as summary of simpler properties.

⇒ These are dealt with by rules in program transformation tool.
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Translating High-level Annotations to STML.

STML properties can be inferred for high-level annotations.

#pragma polca map B v c

for(int i=0;i<N;i++)

#pragma polca def B

#pragma polca input v[i]

#pragma polca output c[i]

c[i] = a*v[i];

→
#pragma stml reads v in {0}

#pragma stml writes c in {0}

#pragma stml same_length v c

#pragma stml pure B

#pragma stml iteration_space 0 length(v)

#pragma stml iteration_independent

for(int i = 0; i < N; i++)

#pragma polca def B

#pragma polca input v[i]

#pragma polca output c[i]

c[i] = a*v[i];
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Components of the Transformation Tool.

GPGPU (OpenCL)
Translated code

Open MP

MPI

FPGA (MaxJ)

Ready code

Initial
code

annotated

Transformation Translation

User

External
tools

Annotations

Engine written in Haskell

Rule
library
(STML)

Rule library
(Haskell)

.hs .hs .hs

Rule execution(s)
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Rule Testing.

• How to ensure rules are correct?
I Formal proofs possible (and ideal), but also resource-consuming.

• A set of automatic testers has been developed to ease the checking of the
rules behavior.

• Perform several tests over the resulting code of each transformation step.
• Several strategies at the moment:

I n random steps.
I Random order, using each rule at most once.
I Similar to last one, backtracking to previous states that could enable

non-applied rules.

• Output:
I Applied rules.
I Not applied rules:

F Because patterns or conditions not met.
F Because they were not chosen (but could be applied).

I In case of error: The failing rule and the concrete transformation step.
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Rule Selection.

• Generally, several rules can be applied at a number of code locations.
• At any point, candidate rules can be:

I applicable,
I maybe (not) applicable,
I definitely not applicable

• Selected rule(s) should improve code.

Interactive Rule Selection
• User chooses the transformation steps to apply.

• Meld and other specific tools (e.g. POGADE) help in this process.

• Useful to refine rules, perform specific transformations, do aggressive
program refactoring.

• Scalability an issue.

21/45



Rule Selection.

• We need a way to mechanize rule selection.
I Select at each step the rule which reduces some metric → local minima
I Explore a bounded number of possible rule applications

F Too small → local minima
F Too big → exponential explosion

• Additional issues
I Inverse/involutive rules → infinite loops
I Rules that duplicate code (e.g. unfolding) → same rule/different states

External Oracle to Select Rules
• Given code and set of applicable transformation steps, return which

transformation step should be applied.

• Given code, return whether transformation can be assumed successfully
finishd.

22/45



Source-to-Source Tool Interface.

Transformation
Manager

S2S
Tool

Code

{	(	Rule,	Pos	)	}

(Code,	Rule,	Pos)

Code

INPUT	CODE

READY	CODE

ML
Tool

{	(	Code,	 {	Rule	}	)	}

Code

Boolean

(Code,	Rule)
Applicable rules

Transformation

Rule	selection

Ready code check

• All the communications are done using JSON.
• The s2s tool interface is also used by POGADE.
• A serialization of the AST, the applicable transformations and other relevant

data is done when the s2s interfaces are used.
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Machine Learning: Deciding Strategy



Problems to be Addressed.

• Rule-based transformation =⇒ state-space exploration problem.
I Efficiently explore (prune) search space.
I Define a stop criteria.
I Improve quality of code.

Possible solution: heuristics to drive the search

• Heuristics which monotonically increase some metric would disallow
sequences which temporarily generate code of lesser quality.

• Heuristics should “plan for” whole sequences or at least series of steps.
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Non-Local Heuristics and Machine Learning.

• Don’t come up with heuristics: likely complex and brittle.

• Synthesize (learn) them from existing, good examples.

• ML generally operates on descriptions of real world.
• Program abstractions as descriptions of actual programs.

I Should capture features of states (codes) in the search space.
I Should reflect the changes performed by actions.

• Based on code features related with:
I Control flow,
I Data layout,
I Data dependencies. . .
I Also on code annotations (externally provided.)

• Note: previous works apply ML to e.g. compilation.
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Program Abstractions.

Abstraction: vector of code features (to be further enriched)

N N N B B N B N B N N N N N N
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Reinforcement Learning.

• Large area of machine learning.

• Learn from sequences of states and transformations which may contain
“counterproductive” steps.

• Reinforcement learning (RL):
I Well-suited for problems with long-term (vs. short-term) rewards.

• Used by the transformation engine:
I Reduce search space by applying “good” transformation sequences.
I Handle sequences with intermediate “bad” steps (delayed reward).
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RL Basics.

• RL learns from examples.
I Sequences of stepwise changes

from some initial state to some
final state.

• Result: action-value matrix Q(st , at)
I Determines, for each state, the

relative profit of applying every
action.

I Action to apply: the one with
highest profit.

• Q matrix filled with learning model
I α: learning rate (new information)
I γ: discount factor (future rewards)

a0 a1 an

s0 q0,0 q0,1 · · · · · · q0,n

s1 q1,0 q1,1 q1,n

...
...

...
...

sm q0,m q1,m · · · · · · qm,n
}

States

}Actions

Q(st , at) =


Q(st , at) + α · (rt+1 + γ · Q(st+1, at+1) − Q(st , at) ) if st not final

Qinit(st , at) otherwise
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Code, State/Action Table, Rule Selection.

r0 r1 rn

s0 q0,0 q0,1 · · · · · · q0,n

s1 q1,0 q1,1 q1,n

...
...

...
...

sm q0,m q1,m · · · · · · qm,n

C0

C1

Cm

SM

SM

SM

c0

c1

c2

A

c3

c4

c5

c6

c7

c8

...

...

Concrete
code

Code
abstraction

} States ≈
Code
Abstractions

}Actions = Rules
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Search Space: Stopping.

• Stopping encoded in state-action table.
• Determine stop criteria for training sequences:

I Is the current code ready to be translated into the target architecture?
I If so, is the current code of quality enough?

• One possibility: at each step, check if transformed code can be used to
generate correct platform-specific code.

I Involves calling translator, platform-specific compiler.
I Not practical – might take an exceedingly long time (e.g., in FPGAs).
I Can not determine / measure optimality.

• Classification methods learned to classify good states to stop transforming.
I Not a canonical form, but a shape which looks good enough.
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Learning Example.

• A transformation sequence on a simple example.
I Initial state: 2D convolution kernel.
I Final code:

F Well-suited to generate MaxJ (FPGA/DFE) code.
F Learned by a classifier as a good final state for the translation phase.

I Abstraction (vector of features) shown for each code state.
I Transformation steps provided by expert programmer.
I Code transformed in each step highlighted as:

F before transformation
F after transformation
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Learning Example (Cont.).

• Initial code

// ABSTR: [3, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 3, 2, 4, 0]

int dead_rows = K / 2;
int dead_cols = K / 2;

int normal_factor = K * K;

for (r = 0; r < N - K + 1; r++) {
for (c = 0; c < N - K + 1; c++) {
sum = 0;
for (i = 0; i < K; i++) {
for (j = 0; j < K; j++) {
sum += input_image[r+i][c+j] * kernel[i][j];

}
}
output_image[r+dead_rows][c+dead_cols] = (sum / normal_factor);

}
}
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Learning Example (Cont.).

• Step 1 (Rule: ArrayFlatten)

// ABSTR: [3, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 2, 2, 4, 0]

int dead_rows = K / 2;
int dead_cols = K / 2;

int normal_factor = K * K;

for (r = 0; r < N - K + 1; r++) {
for (c = 0; c < N - K + 1; c++) {
sum = 0;
for (i = 0; i < K; i++) {
for (j = 0; j < K; j++) {
sum += input_image[(r+i)*(N - K + 1) + (c+j)] * kernel[i][j];

}
}
output_image[r+dead_rows][c+dead_cols] = (sum / normal_factor);

}
}
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Learning Example (Cont.).

• Step 2 (Rule: ArrayFlatten)

// ABSTR: [3, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 2, 4, 0]

int dead_rows = K / 2;
int dead_cols = K / 2;

int normal_factor = K * K;

for (r = 0; r < N - K + 1; r++) {
for (c = 0; c < N - K + 1; c++) {
sum = 0;
for (i = 0; i < K; i++) {
for (j = 0; j < K; j++) {
sum += input_image[(r+i)*(N - K + 1) + (c+j)] * kernel[i*K+j];

}
}
output_image[r+dead rows][c+dead cols] = (sum / normal_factor);

}
}
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Learning Example (Cont.).

• Step 3 (Rule: ArrayFlatten)

// ABSTR: [3, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 2, 4, 0]

int dead_rows = K / 2;
int dead_cols = K / 2;

int normal_factor = K * K;

for(r = 0; r < N - K + 1; r++) {
for(c = 0; c < N - K + 1; c++) {
sum = 0;
for (i = 0; i < K; i++) {
for (j = 0; j < K; j++) {
sum += input_image[(r+i)*(N - K + 1) + (c+j)] * kernel[i*K+j];

}
}
output_image[(r+dead rows)*(N-K+1) + (c+dead cols)] = (sum / normal_factor);

}
}
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Learning Example (Cont.).

• Step 4 (Rule: CollapseFoorLoops)

// ABSTR: [2, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 2, 3, 0]

int dead_rows = K / 2;
int dead_cols = K / 2;

int normal_factor = K * K;

for (z = 0; z < (N - K + 1)*(N - K + 1); z++) {
sum = 0;
for (i = 0; i < K; i++) {
for (j = 0; j < K; j++) {
sum += input_image[((z / (N - K + 1))+i)*(N - K + 1) + ((z % (N - K +

1))+j)] * kernel[i*K+j];
}

}
output_image[((z / (N - K + 1))+dead_rows)*(N - K + 1) +

((z % (N - K + 1))+dead_cols)] = (sum / normal_factor);
}
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Learning Example (Cont.).

• Mapping of states (S) to abstractions (A)

S0 = A(C0): [3, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 3, 2, 4, 0] (Initial)
S1 = A(C1): [3, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 2, 2, 4, 0]
S2 = A(C2): [3, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 2, 4, 0]
S3 = A(C3): [3, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 2, 4, 0]
S4 = A(C4): [2, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 2, 3, 0] (Goal)

• Expert sequence (transition matrix)

R0 R1

S0 S1 S0

S1 S2 S1

S2 S3 S2

S3 S3 S4

S4 S4 S4

• Initial action-value table (Q)

R0 R1 Best
C0 1.0 1.0 -
C1 1.0 1.0 -
C2 1.0 1.0 -
C3 1.0 1.0 -
C4 1.0 1.0 -
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Learning Example (Cont.).

• Simple training: 10 iterations, 3 interactions/iteration
• Learning params: α = 0.5, γ = 0.5, rt+1 = 1 (final) | 0 (not final)

Iteration 1

R0 R1 Best
C0 0.9955 1.0 R1

C1 0.995 1.0 R1

C2 1.0 1.0 -
C3 1.0 1.0 -
C4 1.0 1.0 -

Iteration 3

R0 R1 Best
C0 0.9955 0.9881 R0

C1 0.995 1.0 R1

C2 1.0 1.0 -
C3 1.0 1.4434 R1

C4 1.0 1.0 -

Iteration 5

R0 R1 Best
C0 0.9955 0.9881 R0

C1 0.9925 0.9955 R1

C2 1.2145 1.0910 R0

C3 1.0 1.4434 R1

C4 1.0 1.0 -

Iteration 10

R0 R1 Best
C0 1.1490 0.9881 R0

C1 1.2216 0.9905 R0

C2 1.5942 1.0910 R0

C3 0.995 1.9466 R1

C4 1.0 1.0 -
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Implementation Details.

• Implemented in Python using two packages
• Scikit-learn: classification methods

I Several machine learning algorithms
I Good support and ample documentation
I Widely used by the scientific community.

• PyBrain: reinforcement learning
I Modular structure in classes (environment, actions, ...)
I Extension of PyBrain classes to implement our approach
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Preliminary Evaluation.

• Using cases from POLCA and UTDSP benchmark suite as training set.
• Featuring different algorithmic patterns (image processing):

I Compress (JPG compression).
I Edge detection (convolution).
I RGB filter (image filter).
I Threshold (image filter).

• Manually identified transformation sequences leading to OpenCL
• Simple reward scheme linked to efficiency (much higher for the best code).
• Evaluation using different examples, sharing patterns with training set:

I 3D rotation.
I Image difference.
I Brightness change.

• Different aspects were satisfactorily evaluated:
I Transformation process terminates, “good” final states reached.
I RL learned different sequences which might share intermediate steps.
I Transformations can start at any point in the learned sequences
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Preliminary Evaluation.

• Results to show the non-monotonic behavior of transformation sequences
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Preliminary Evaluation.

• Evaluation of OpenCL code mechanically generated from learnt
transformation sequences
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Conclusions.

• Extensible, flexible rule-based framework for program transformation.

• Interface to external tools to select transformations to be enacted.

• Using machine learning-based oracle to guide rule selection.

• Preliminary evaluation (more around the corner!) satisfactory.
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Future Steps.

• Add more (complex) transformation rules, evaluate on larger examples.
• Add more interfaces to external analysis tools.

I Dependence analysis (e.g., polytope-based analyzers).
I Reasoning over heap pointers (e.g., separation logic).

• Integrate profiling techniques → ease evaluation and give feedback.

• Increase training set, enhance code abstractions as needed.
• Use richer, non-functional measurements for RL.

I Measures of optimality to better discriminate between possible final states
based on performance.

• Explore using ML to decide best platform for a piece of code
I E.g., use a single action-value table with several goals, select the best platform

among the most reinforced sequences

45/45



Machine Learning-Driven Program Transformation
to Increase Performance in Heterogeneous Architectures

S. Tamarit, G. Vigueras, M. Carro, J. Mariño

IMDEA Software Institute
and

Technical University of Madrid

10th International Parallel Tools Workshop
HLRS, Stuttgart, October 4-5, 2016

partially funded by the European Comission under FP7-ICT-2014.3.4 contract number 610686


	Rules: Extensible Program Transformations
	Extracting Code Properties
	Machine Learning: Deciding Strategy

