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BSC Tools 

Since 1991 
Based on traces 
  Open source 

§  http://www.bsc.es/paraver 

Core tools 
§  Paraver à Offline trace analysis 
§  Dimemas à Message-passing simulator 
§  Extrae à Instrumentation 

Focus 
§  Detail, variability, flexibility 
§  Behavioral structure vs. Syntactic structure 
§  Intelligence: Performance Analytics 
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Extrae – Trace Generation 
Parallel programming models 
§  MPI, OpenMP, pthreads, OmpSs, CUDA, OpenCL, Java, Python… 

  Performance Counters 
§  CPU  – PAPI and PMAPI 
§  Network  – Myrinet (GM and MX) 
§  OS  – Memory allocation, resource usage 

  Links to source 
§  Callstack at MPI calls 
§  OpenMP outlined routines 
§  Selected user functions 

Periodic sampling 
 

User events (Extrae API) 

IPTW – 2016 



  Visual and statistical analysis 

Clustering, Folding, Tracking 

Paraver – Trace Analyzer 
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OpenMP Instrumentation Challenges 

Multiple implementations 
§  GNU, IBM, Intel, Oracle Studio, LLVM… 
 

Proprietary runtimes with unknown API’s 
§  Non-disclosure agreements? 
§  Reverse engineering? 
 

Changes in newer versions that break compatibility 
§  E.g. Changes in tasking routines in GNU libgomp v4.9  
§  Users find out these problems with sudden crashes 

  High development burden 

  OMPT was proposed to improve this scenario 



Source: OpenMP Tools API, John Mellor-Crummey, STW 2015 
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OMPT: OpenMP Performance Tools API 

Goal: a standardized tool interface for OpenMP 
§  Prerequisite for portable tools for debugging and performance analysis 
§  Missing piece of the OpenMP language standard 
 

Design objectives 
§  Enable tools to measure and attribute costs to application source and runtime 

system 
•  Support low-overhead tools based on asynchronous sampling 
•  Attribute to user-level calling contexts 
•  Associate a thread’s activity at any point with a descriptive state 

§  Minimize overhead if OMPT interface is not in use 
•  Features that may increase overhead are optional 

§  Define interface for trace-based performance tools 
§  Don’t impose an unreasonable development burden 
 

Includes specification to collect performance data from target devices 
§  GPU’s, DSP’s, FPGA’s, Xeon Phi… 



Forerunner of OpenMP that added task data dependencies 
 

 

Tasks can be submitted to accelerators 
§  #pragma omp target device(fpga) 
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OmpSs (Cholesky Example) 

void Cholesky( float *A ) { 
  int NB, i, j, k; 
  for (k=0; k<NB; k++) { 
#pragma omp task inout(A[k*NB+k] 
    ● dpotrf (A[k*NB+k]);  
    for (i=k+1; i<NB; i++) 
#pragma omp task input(A[k*NB+k) inout(A[k*NB+i]) 
      ● dtrsm (A[k*NB+k], A[k*NB+i]);  
    for (i=k+1; i<NB; i++) { 
      for (j=k+1; j<i; j++) 
#pragma omp task input(A[k*NB+i], A[k*NB+j]) inout(A[j*NB+i]) 
        ● dgemm( A[k*NB+i], A[k*NB+j], A[j*NB+i]); 
#pragma omp task input (A[k*NB+i]) inout(A[i*NB+i]) 
      ● dsyrk (A[k*NB+i], A[i*NB+i]); 
    } 
  } 
} 
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Synergy 
OmpSs + Extrae + OMPT = Traces from FPGA devices 
Why? 
§  Improve the analysis retrieving data only known by the parallel runtime 

•  Activity of accelerator devices (FPGA) 

How? 
§  Implement the OMPT standard to connect runtime and performance tool 
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FPGA Tracing: Initialization and Time Correction 
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FPGA Tracing: Cycles Counter 

  Hardware (access from PL and PS) 

Counter 
implementation 

Counter 
BRAM 
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FPGA Tracing: Execution and Event Recording 
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Experimental Setup 

Zynq SoC 702 board 
§  SMP dual core ARM Cortex A9 at 666 MHz + FPGA Xilinx Artix 7 

OmpSs ecosystem for FPGA/SMP heterogeneous execution 
§  Mercurium compiler v1.99.9 
§  Nanos++ runtime 0.10a 

Instrumentation 
§  Extrae tracing framework v3.3.0 

Bitstream generation to implement FPGA logic 
§  Xilinx’s Vivado and Vivado HLS v2015.4 

•  For FP apps, HLS synthesizes code compliant with the IEEE-754 standard 

All applications and libraries cross-compiled 
§  arm-linux-gnueabihf-gcc 4.8.4 (Ubuntu/Linaro 4.8.4-2ubuntu1 14.04.1) 
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Example: Matrix Multiply 

 

 
  2 MxM, 256 nblocks, 64 bsize, 1 FPGA accelerator 

BS

BS
NB

NB

BS

BS

#pragma omp target device (fpga) 
#pragma omp task in([BS*BS]A, [BS*BS]B) inout([BS*BS]C) 
void MxM(REAL *A, REAL *B, REAL *C); 
 
void matmul(REAL **AA, REAL **BB, REAL **CC, int NB) { 
  for (int k=0; k<NB; k++) 
    for (int i=0; i<NB; i++) 
      for (int j=0; j<NB; j++) { 
        MxM(AA[i*NB+k], BB[k*NB+j], CC[i*NB+j]); 
        MxM( … ); 
      } 
} 

Unrolled by 2 



IPTW – 2016 15 

Example: Matrix Multiply 

Task avg. execution time per stage 
§  Input/output DMA ratio close to 3x 
§  DMA transfer performance may vary 

•  Different DMA input/output bandwidth 
•  Different waiting time for the corresponding DMA 

submit 
 
 

Task overlapping using 2 FPGA accelerators 

64 x 64 Task #1 Task #2 

FPGA acc 334.81 us 337.53 us 

DMA_in 260.43 us 246.53 us 

DMA_out 82.82 us 82.76 us 

32 x 32 Task #1 Task #2 

FPGA acc 46.51 us 44.51 us 

DMA_in 229.02 us 256.37 us 

DMA_out 80.49 us 82.33 us 

DMA_in 
1 

DMA_out 
1 

FPGA acc 
1 

DMA_in 
2 0% 21.4% 17.0% 

DMA_out 
2 20.1% 0% 0% 

FPGA_acc 
2 11.2% 0% 0% 

Never active simultaneously 
due to scheduling pattern 

Computations do not overlap 
due to the small execution times 
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Example: Matrix Multiply 

  >90% computation overlap using a non-optimized accelerator 

We can gain insight about… 
§  DMA memory transfers and computation overlap 
§  Latency information 
§  Runtime memory management 
§  Scheduling policy 



First DMA transfer costs 2x more than 
any other due to driver initialization 
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Example: Cholesky Decomposition (SMP and FPGA Issues) 

Evaluated 1 possible target device partition 
§  dgemm/dsyrk running in FPGA; dpotrf/dtrsm running in SMP 
§  Possible improvements 

•  Accelerate dtrsm or use more SMP cores 
•  Use another accelerator for dgemm tasks 

dtrsm is the main critical execution path 
resulting in long idles in the accelerators 



1 dgemm and dsyrk overlap per iteration (N to 1) 
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Example: Cholesky Decomposition (SMP and FPGA Issues) 

Evaluated 1 possible target device partition 
§  dgemm/dsyrk running in FPGA; dpotrf/dtrsm running in SMP 
§  Possible improvements 

•  Accelerate dtrsm or use more SMP cores 
•  Use another accelerator for dgemm tasks 



IPTW – 2016 19 

Conclusions and Future Work 

  OMPT enabled cooperation between OmpSs and Extrae 
 

Seamless software interoperability 

About 1 y.o. spec already supported different types of accelerators 

Current spec is practically in final version and under consideration to be 
integrated in OpenMP 5 

 
Analysis provided insight to make SW/HW improvements of 3x 

 
Extend runtime to support CUDA, OpenCL and Xeon Phi  

 
Extend instrumentation to include further information in the trace 
§  Algorithm phases, logical states, task dependences, runtime internals, power 

efficiency… 
 


