
M. Wagner1, G. Llort1,2, A. Filgueras1,2, D. Jiménez-González1,2,
H.Servat3, X.Teruel1,2, E. Mercadal1,2, C. Álvarez1,2,

J.Giménez1,2, X.Martorell1,2, E. Ayguadé1,2, J. Labarta1,2

michael.wagner@bsc.es

1) Department of Computer Sciences, Barcelona Supercomputing Center
2) Department of Computer Architecture, Polytechnic University of Catalonia - BarcelonaTech

3) Intel Corporation

Tracing Heterogeneous Executions
Through OMPT

2

Outline

Introduction
§  Tools, OmpSs, OMPT

How it all works together
Examples

IPTW – 2016

IPTW – 2016 3

BSC Tools

Since 1991
Based on traces
  Open source

§  http://www.bsc.es/paraver

Core tools
§  Paraver à Offline trace analysis
§  Dimemas à Message-passing simulator
§  Extrae à Instrumentation

Focus
§  Detail, variability, flexibility
§  Behavioral structure vs. Syntactic structure
§  Intelligence: Performance Analytics

4

Extrae – Trace Generation
Parallel programming models
§  MPI, OpenMP, pthreads, OmpSs, CUDA, OpenCL, Java, Python…

  Performance Counters
§  CPU – PAPI and PMAPI
§  Network – Myrinet (GM and MX)
§  OS – Memory allocation, resource usage

  Links to source
§  Callstack at MPI calls
§  OpenMP outlined routines
§  Selected user functions

Periodic sampling

User events (Extrae API)

IPTW – 2016

  Visual and statistical analysis

Clustering, Folding, Tracking

Paraver – Trace Analyzer

5 IPTW – 2016 5

IPTW – 2016 6

OpenMP Instrumentation Challenges

Multiple implementations
§  GNU, IBM, Intel, Oracle Studio, LLVM…

Proprietary runtimes with unknown API’s
§  Non-disclosure agreements?
§  Reverse engineering?

Changes in newer versions that break compatibility
§  E.g. Changes in tasking routines in GNU libgomp v4.9
§  Users find out these problems with sudden crashes

  High development burden

  OMPT was proposed to improve this scenario

Source: OpenMP Tools API, John Mellor-Crummey, STW 2015
7

OMPT: OpenMP Performance Tools API

Goal: a standardized tool interface for OpenMP
§  Prerequisite for portable tools for debugging and performance analysis
§  Missing piece of the OpenMP language standard

Design objectives
§  Enable tools to measure and attribute costs to application source and runtime

system
•  Support low-overhead tools based on asynchronous sampling
•  Attribute to user-level calling contexts
•  Associate a thread’s activity at any point with a descriptive state

§  Minimize overhead if OMPT interface is not in use
•  Features that may increase overhead are optional

§  Define interface for trace-based performance tools
§  Don’t impose an unreasonable development burden

Includes specification to collect performance data from target devices
§  GPU’s, DSP’s, FPGA’s, Xeon Phi…

Forerunner of OpenMP that added task data dependencies

Tasks can be submitted to accelerators
§  #pragma omp target device(fpga)

8

OmpSs (Cholesky Example)

void Cholesky(float *A) {
 int NB, i, j, k;
 for (k=0; k<NB; k++) {
#pragma omp task inout(A[k*NB+k]
 ● dpotrf (A[k*NB+k]);
 for (i=k+1; i<NB; i++)
#pragma omp task input(A[k*NB+k) inout(A[k*NB+i])
 ● dtrsm (A[k*NB+k], A[k*NB+i]);
 for (i=k+1; i<NB; i++) {
 for (j=k+1; j<i; j++)
#pragma omp task input(A[k*NB+i], A[k*NB+j]) inout(A[j*NB+i])
 ● dgemm(A[k*NB+i], A[k*NB+j], A[j*NB+i]);
#pragma omp task input (A[k*NB+i]) inout(A[i*NB+i])
 ● dsyrk (A[k*NB+i], A[i*NB+i]);
 }
 }
}

IPTW – 2016

Synergy
OmpSs + Extrae + OMPT = Traces from FPGA devices
Why?
§  Improve the analysis retrieving data only known by the parallel runtime

•  Activity of accelerator devices (FPGA)

How?
§  Implement the OMPT standard to connect runtime and performance tool

9 IPTW – 2016

IPTW – 2016 10

FPGA Tracing: Initialization and Time Correction

IPTW – 2016 11

FPGA Tracing: Cycles Counter

  Hardware (access from PL and PS)

Counter
implementation

Counter
BRAM

IPTW – 2016 12

FPGA Tracing: Execution and Event Recording

IPTW – 2016 13

Experimental Setup

Zynq SoC 702 board
§  SMP dual core ARM Cortex A9 at 666 MHz + FPGA Xilinx Artix 7

OmpSs ecosystem for FPGA/SMP heterogeneous execution
§  Mercurium compiler v1.99.9
§  Nanos++ runtime 0.10a

Instrumentation
§  Extrae tracing framework v3.3.0

Bitstream generation to implement FPGA logic
§  Xilinx’s Vivado and Vivado HLS v2015.4

•  For FP apps, HLS synthesizes code compliant with the IEEE-754 standard

All applications and libraries cross-compiled
§  arm-linux-gnueabihf-gcc 4.8.4 (Ubuntu/Linaro 4.8.4-2ubuntu1 14.04.1)

IPTW – 2016 14

Example: Matrix Multiply

  2 MxM, 256 nblocks, 64 bsize, 1 FPGA accelerator

BS

BS
NB

NB

BS

BS

#pragma omp target device (fpga)
#pragma omp task in([BS*BS]A, [BS*BS]B) inout([BS*BS]C)
void MxM(REAL *A, REAL *B, REAL *C);

void matmul(REAL **AA, REAL **BB, REAL **CC, int NB) {
 for (int k=0; k<NB; k++)
 for (int i=0; i<NB; i++)
 for (int j=0; j<NB; j++) {
 MxM(AA[i*NB+k], BB[k*NB+j], CC[i*NB+j]);
 MxM(…);
 }
}

Unrolled by 2

IPTW – 2016 15

Example: Matrix Multiply

Task avg. execution time per stage
§  Input/output DMA ratio close to 3x
§  DMA transfer performance may vary

•  Different DMA input/output bandwidth
•  Different waiting time for the corresponding DMA

submit

Task overlapping using 2 FPGA accelerators

64 x 64 Task #1 Task #2

FPGA acc 334.81 us 337.53 us

DMA_in 260.43 us 246.53 us

DMA_out 82.82 us 82.76 us

32 x 32 Task #1 Task #2

FPGA acc 46.51 us 44.51 us

DMA_in 229.02 us 256.37 us

DMA_out 80.49 us 82.33 us

DMA_in
1

DMA_out
1

FPGA acc
1

DMA_in
2 0% 21.4% 17.0%

DMA_out
2 20.1% 0% 0%

FPGA_acc
2 11.2% 0% 0%

Never active simultaneously
due to scheduling pattern

Computations do not overlap
due to the small execution times

IPTW – 2016 16

Example: Matrix Multiply

  >90% computation overlap using a non-optimized accelerator

We can gain insight about…
§  DMA memory transfers and computation overlap
§  Latency information
§  Runtime memory management
§  Scheduling policy

First DMA transfer costs 2x more than
any other due to driver initialization

IPTW – 2016 17

Example: Cholesky Decomposition (SMP and FPGA Issues)

Evaluated 1 possible target device partition
§  dgemm/dsyrk running in FPGA; dpotrf/dtrsm running in SMP
§  Possible improvements

•  Accelerate dtrsm or use more SMP cores
•  Use another accelerator for dgemm tasks

dtrsm is the main critical execution path
resulting in long idles in the accelerators

1 dgemm and dsyrk overlap per iteration (N to 1)

IPTW – 2016 18

Example: Cholesky Decomposition (SMP and FPGA Issues)

Evaluated 1 possible target device partition
§  dgemm/dsyrk running in FPGA; dpotrf/dtrsm running in SMP
§  Possible improvements

•  Accelerate dtrsm or use more SMP cores
•  Use another accelerator for dgemm tasks

IPTW – 2016 19

Conclusions and Future Work

  OMPT enabled cooperation between OmpSs and Extrae

Seamless software interoperability

About 1 y.o. spec already supported different types of accelerators

Current spec is practically in final version and under consideration to be
integrated in OpenMP 5

Analysis provided insight to make SW/HW improvements of 3x

Extend runtime to support CUDA, OpenCL and Xeon Phi

Extend instrumentation to include further information in the trace
§  Algorithm phases, logical states, task dependences, runtime internals, power

efficiency…

